Title: | Graph/Network Visualization |
---|---|
Description: | Build graph/network structures using functions for stepwise addition and deletion of nodes and edges. Work with data available in tables for bulk addition of nodes, edges, and associated metadata. Use graph selections and traversals to apply changes to specific nodes or edges. A wide selection of graph algorithms allow for the analysis of graphs. Visualize the graphs and take advantage of any aesthetic properties assigned to nodes and edges. |
Authors: | Richard Iannone [aut, cre] , Olivier Roy [aut] |
Maintainer: | Richard Iannone <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.0.11.9000 |
Built: | 2025-01-18 05:32:27 UTC |
Source: | https://github.com/rich-iannone/diagrammer |
With a graph object of class dgr_graph
, add a balanced tree to the graph.
add_balanced_tree( graph, k, h, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_balanced_tree( graph, k, h, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
k |
The branching factor for the tree. |
h |
The height of the tree. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the node tree. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and # add 2 different types of # balanced trees of height # 2 (branching twice) and # different branching ratios graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2, type = "binary") %>% add_balanced_tree( k = 3, h = 2, type = "tertiary") # Get some node information # from this graph graph %>% get_node_info() %>% head(5) # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments graph_w_attrs <- create_graph() %>% add_balanced_tree( k = 2, h = 2, label = c( "one", "two", "three", "four", "five", "six", "seven"), type = c( "a", "b", "b", "c", "c", "c", "c"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), node_data = node_data( value = c( 1.6, 2.8, 3.4, 8.3, 3.8, 5.2, 3.2)), edge_aes = edge_aes( color = "red", penwidth = 1.2)) # Get the first three rows of # the graph's node data frame graph_w_attrs %>% get_node_df() %>% head(3) # Get the first three rows of # the graph's edge data frame graph_w_attrs %>% get_edge_df() %>% head(3)
# Create a new graph and # add 2 different types of # balanced trees of height # 2 (branching twice) and # different branching ratios graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2, type = "binary") %>% add_balanced_tree( k = 3, h = 2, type = "tertiary") # Get some node information # from this graph graph %>% get_node_info() %>% head(5) # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments graph_w_attrs <- create_graph() %>% add_balanced_tree( k = 2, h = 2, label = c( "one", "two", "three", "four", "five", "six", "seven"), type = c( "a", "b", "b", "c", "c", "c", "c"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), node_data = node_data( value = c( 1.6, 2.8, 3.4, 8.3, 3.8, 5.2, 3.2)), edge_aes = edge_aes( color = "red", penwidth = 1.2)) # Get the first three rows of # the graph's node data frame graph_w_attrs %>% get_node_df() %>% head(3) # Get the first three rows of # the graph's edge data frame graph_w_attrs %>% get_edge_df() %>% head(3)
With a graph object of class dgr_graph
, add a node cycle to the graph.
add_cycle( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_cycle( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the cycle. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the node cycle. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and # add a cycle of nodes to it graph <- create_graph() %>% add_cycle(n = 6) # Get node information # from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_cycle( n = 3, label = c( "one", "two", "three"), type = c( "a", "a", "b"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4)), edge_data = edge_data( value = rnorm( n = 3, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
# Create a new graph and # add a cycle of nodes to it graph <- create_graph() %>% add_cycle(n = 6) # Get node information # from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_cycle( n = 3, label = c( "one", "two", "three"), type = c( "a", "a", "b"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4)), edge_data = edge_data( value = rnorm( n = 3, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
With a graph object of class dgr_graph
, add an edge to nodes within the
graph.
add_edge(graph, from, to, rel = NULL, edge_aes = NULL, edge_data = NULL)
add_edge(graph, from, to, rel = NULL, edge_aes = NULL, edge_data = NULL)
graph |
A graph object of class |
from |
The outgoing node from which the edge is connected. There is the
option to use a node |
to |
The incoming nodes to which each edge is connected. There is the
option to use a node |
rel |
An optional string specifying the relationship between the connected nodes. |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with 4 nodes graph <- create_graph() %>% add_node(label = "one") %>% add_node(label = "two") %>% add_node(label = "three") %>% add_node(label = "four") # Add an edge between those # nodes and attach a # relationship to the edge graph <- add_edge( graph, from = 1, to = 2, rel = "A") # Use the `get_edge_info()` # function to verify that # the edge has been created graph %>% get_edge_info() # Add another node and # edge to the graph graph <- graph %>% add_edge( from = 3, to = 2, rel = "A") # Verify that the edge # has been created by # counting graph edges graph %>% count_edges() # Add edges by specifying # node `label` values; note # that all nodes must have # unique `label` values to # use this option graph <- graph %>% add_edge( from = "three", to = "four", rel = "L") %>% add_edge( from = "four", to = "one", rel = "L") # Use `get_edges()` to verify # that the edges were added graph %>% get_edges() # Add edge aesthetic and data # attributes during edge creation graph_2 <- create_graph() %>% add_n_nodes(n = 2) %>% add_edge( from = 1, to = 2, rel = "M", edge_aes = edge_aes( penwidth = 1.5, color = "blue"), edge_data = edge_data( value = 4.3)) # Use the `get_edges()` function # to verify that the attribute # values were bound to the # newly created edge graph_2 %>% get_edge_df()
# Create a graph with 4 nodes graph <- create_graph() %>% add_node(label = "one") %>% add_node(label = "two") %>% add_node(label = "three") %>% add_node(label = "four") # Add an edge between those # nodes and attach a # relationship to the edge graph <- add_edge( graph, from = 1, to = 2, rel = "A") # Use the `get_edge_info()` # function to verify that # the edge has been created graph %>% get_edge_info() # Add another node and # edge to the graph graph <- graph %>% add_edge( from = 3, to = 2, rel = "A") # Verify that the edge # has been created by # counting graph edges graph %>% count_edges() # Add edges by specifying # node `label` values; note # that all nodes must have # unique `label` values to # use this option graph <- graph %>% add_edge( from = "three", to = "four", rel = "L") %>% add_edge( from = "four", to = "one", rel = "L") # Use `get_edges()` to verify # that the edges were added graph %>% get_edges() # Add edge aesthetic and data # attributes during edge creation graph_2 <- create_graph() %>% add_n_nodes(n = 2) %>% add_edge( from = 1, to = 2, rel = "M", edge_aes = edge_aes( penwidth = 1.5, color = "blue"), edge_data = edge_data( value = 4.3)) # Use the `get_edges()` function # to verify that the attribute # values were bound to the # newly created edge graph_2 %>% get_edge_df()
Add a new edge to a graph object of class dgr_graph
which is a clone of an
edge already in the graph. All edge attributes are preserved.
add_edge_clone(graph, edge, from, to)
add_edge_clone(graph, edge, from, to)
graph |
A graph object of class |
edge |
An edge ID corresponding to the graph edge to be cloned. |
from |
The outgoing node from which the edge is connected. |
to |
The incoming nodes to which each edge is connected. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with a path of # 2 nodes; supply a common `rel` # edge attribute for all edges # in this path and then add a # `color` edge attribute graph <- create_graph() %>% add_path( n = 2, rel = "a") %>% select_last_edges_created() %>% set_edge_attrs( edge_attr = color, values = "steelblue") %>% clear_selection() # Display the graph's internal # edge data frame graph %>% get_edge_df() # Create a new node (will have # node ID of `3`) and then # create an edge between it and # node `1` while reusing the edge # attributes of edge `1` -> `2` # (edge ID `1`) graph_2 <- graph %>% add_node() %>% add_edge_clone( edge = 1, from = 3, to = 1) # Display the graph's internal # edge data frame graph_2 %>% get_edge_df() # The same change can be performed # with some helper functions in the # `add_edge_clone()` function call graph_3 <- graph %>% add_node() %>% add_edge_clone( edge = get_last_edges_created(.), from = get_last_nodes_created(.), to = 1) # Display the graph's internal # edge data frame graph_3 %>% get_edge_df()
# Create a graph with a path of # 2 nodes; supply a common `rel` # edge attribute for all edges # in this path and then add a # `color` edge attribute graph <- create_graph() %>% add_path( n = 2, rel = "a") %>% select_last_edges_created() %>% set_edge_attrs( edge_attr = color, values = "steelblue") %>% clear_selection() # Display the graph's internal # edge data frame graph %>% get_edge_df() # Create a new node (will have # node ID of `3`) and then # create an edge between it and # node `1` while reusing the edge # attributes of edge `1` -> `2` # (edge ID `1`) graph_2 <- graph %>% add_node() %>% add_edge_clone( edge = 1, from = 3, to = 1) # Display the graph's internal # edge data frame graph_2 %>% get_edge_df() # The same change can be performed # with some helper functions in the # `add_edge_clone()` function call graph_3 <- graph %>% add_node() %>% add_edge_clone( edge = get_last_edges_created(.), from = get_last_nodes_created(.), to = 1) # Display the graph's internal # edge data frame graph_3 %>% get_edge_df()
With a graph object of class dgr_graph
, add edges from an edge data frame
to that graph.
add_edge_df(graph, edge_df)
add_edge_df(graph, edge_df)
graph |
A graph object of class |
edge_df |
An edge data frame that is created using |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with 4 nodes # and no edges graph <- create_graph() %>% add_n_nodes(n = 4) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1)) # Add the edge data frame to # the graph object to create # a graph with both nodes # and edges graph <- graph %>% add_edge_df( edge_df = edf) # Get the graph's edges to # verify that the edf had # been added graph %>% get_edges( return_type = "vector")
# Create a graph with 4 nodes # and no edges graph <- create_graph() %>% add_n_nodes(n = 4) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1)) # Add the edge data frame to # the graph object to create # a graph with both nodes # and edges graph <- graph %>% add_edge_df( edge_df = edf) # Get the graph's edges to # verify that the edf had # been added graph %>% get_edges( return_type = "vector")
Add edges and their attributes to an existing graph object from data in a CSV file or a data frame.
add_edges_from_table( graph, table, from_col, to_col, from_to_map, rel_col = NULL, set_rel = NULL, drop_cols = NULL )
add_edges_from_table( graph, table, from_col, to_col, from_to_map, rel_col = NULL, set_rel = NULL, drop_cols = NULL )
graph |
A graph object of class |
table |
Either a path to a CSV file, or, a data frame object. |
from_col |
The name of the table column from which edges originate. |
to_col |
The name of the table column to which edges terminate. |
from_to_map |
A single character value for the mapping of the |
rel_col |
An option to apply a column of data in the table as |
set_rel |
an optional string to apply a |
drop_cols |
An optional column selection statement for dropping columns
from the external table before inclusion as attributes in the graph's
internal edge data frame. Several columns can be dropped by name using the
syntax |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create an empty graph and then # add nodes to it from the # `currencies` dataset available # in the package graph <- create_graph() %>% add_nodes_from_table( table = currencies) # Now we want to add edges to the # graph using an included dataset, # `usd_exchange_rates`, which has # exchange rates between USD and # many other currencies; the key # here is that the data in the # `from` and `to` columns in the # external table maps to graph # node data available in the # `iso_4217_code` column of the # graph's internal node data frame graph_1 <- graph %>% add_edges_from_table( table = usd_exchange_rates, from_col = from_currency, to_col = to_currency, from_to_map = iso_4217_code) # View part of the graph's # internal edge data frame graph_1 %>% get_edge_df() %>% head() # If you would like to assign # any of the table's columns as the # `rel` attribute, this can done # with the `rel_col` argument; to # set a static `rel` attribute for # all edges created, use `set_rel` graph_2 <- graph %>% add_edges_from_table( table = usd_exchange_rates, from_col = from_currency, to_col = to_currency, from_to_map = iso_4217_code, set_rel = "from_usd") # View part of the graph's internal # edge data frame (edf) graph_2 %>% get_edge_df() %>% head()
# Create an empty graph and then # add nodes to it from the # `currencies` dataset available # in the package graph <- create_graph() %>% add_nodes_from_table( table = currencies) # Now we want to add edges to the # graph using an included dataset, # `usd_exchange_rates`, which has # exchange rates between USD and # many other currencies; the key # here is that the data in the # `from` and `to` columns in the # external table maps to graph # node data available in the # `iso_4217_code` column of the # graph's internal node data frame graph_1 <- graph %>% add_edges_from_table( table = usd_exchange_rates, from_col = from_currency, to_col = to_currency, from_to_map = iso_4217_code) # View part of the graph's # internal edge data frame graph_1 %>% get_edge_df() %>% head() # If you would like to assign # any of the table's columns as the # `rel` attribute, this can done # with the `rel_col` argument; to # set a static `rel` attribute for # all edges created, use `set_rel` graph_2 <- graph %>% add_edges_from_table( table = usd_exchange_rates, from_col = from_currency, to_col = to_currency, from_to_map = iso_4217_code, set_rel = "from_usd") # View part of the graph's internal # edge data frame (edf) graph_2 %>% get_edge_df() %>% head()
With a graph object of class dgr_graph
, add one or more edges to the graph
using a text string.
add_edges_w_string(graph, edges, rel = NULL, use_labels = FALSE)
add_edges_w_string(graph, edges, rel = NULL, use_labels = FALSE)
graph |
A graph object of class |
edges |
A single-length vector with a character string specifying the
edges. For a directed graph, the string object should be formatted as a
series of node ID values as |
rel |
An optional vector specifying the relationship between the connected nodes. |
use_labels |
An option to use node |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with 4 nodes graph <- create_graph() %>% add_node(label = "one") %>% add_node(label = "two") %>% add_node(label = "three") %>% add_node(label = "four") # Add edges between nodes using # a character string with node # ID values graph_node_id <- graph %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->3") # Show the graph's internal # edge data frame graph_node_id %>% get_edge_df() # Add edges between nodes using # a character string with node # label values and setting # `use_labels = TRUE`; note that # all nodes must have unique # `label` values to use this graph_node_label <- graph %>% add_edges_w_string( edges = "one->two one->three two->four two->three", use_labels = TRUE) # Show the graph's internal # edge data frame (it's the # same as before) graph_node_label %>% get_edge_df()
# Create a graph with 4 nodes graph <- create_graph() %>% add_node(label = "one") %>% add_node(label = "two") %>% add_node(label = "three") %>% add_node(label = "four") # Add edges between nodes using # a character string with node # ID values graph_node_id <- graph %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->3") # Show the graph's internal # edge data frame graph_node_id %>% get_edge_df() # Add edges between nodes using # a character string with node # label values and setting # `use_labels = TRUE`; note that # all nodes must have unique # `label` values to use this graph_node_label <- graph %>% add_edges_w_string( edges = "one->two one->three two->four two->three", use_labels = TRUE) # Show the graph's internal # edge data frame (it's the # same as before) graph_node_label %>% get_edge_df()
Add edges in the same direction of one or more edges available as an edge
selection in a graph object of class dgr_graph
. New graph edges have the
same edge definitions as those in the selection except with new edge ID
values. There is also the option to assign a common rel
grouping to the
newly created edges. Upon addition of the edges, the edge selection will be
retained for further selection or traversal operations.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
add_forward_edges_ws(graph, rel = NULL)
add_forward_edges_ws(graph, rel = NULL)
graph |
A graph object of class |
rel |
An optional string to apply a |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create an empty graph, add 2 nodes # to it, and create the edge `1->2` graph <- create_graph() %>% add_n_nodes( n = 2, type = "type_a", label = c("a_1", "a_2")) %>% add_edge( from = 1, to = 2, rel = "a") # Get the graph's edges graph %>% get_edge_ids() # Select the edge and create 2 # additional edges with the same # definition (`1->2`) but with # different `rel` values (`b` and `c`) graph <- graph %>% select_edges() %>% add_forward_edges_ws(rel = "b") %>% add_forward_edges_ws(rel = "c") %>% clear_selection() # Get the graph's edge data frame graph %>% get_edge_df()
# Create an empty graph, add 2 nodes # to it, and create the edge `1->2` graph <- create_graph() %>% add_n_nodes( n = 2, type = "type_a", label = c("a_1", "a_2")) %>% add_edge( from = 1, to = 2, rel = "a") # Get the graph's edges graph %>% get_edge_ids() # Select the edge and create 2 # additional edges with the same # definition (`1->2`) but with # different `rel` values (`b` and `c`) graph <- graph %>% select_edges() %>% add_forward_edges_ws(rel = "b") %>% add_forward_edges_ws(rel = "c") %>% clear_selection() # Get the graph's edge data frame graph %>% get_edge_df()
With a graph object of class dgr_graph
, add a fully connected graph either
with or without loops. If the graph object set as directed, the added graph
will have edges to and from each pair of nodes. In the undirected case, a
single edge will link each pair of nodes.
add_full_graph( graph, n, type = NULL, label = TRUE, rel = NULL, edge_wt_matrix = NULL, keep_loops = FALSE, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_full_graph( graph, n, type = NULL, label = TRUE, rel = NULL, edge_wt_matrix = NULL, keep_loops = FALSE, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the fully connected graph. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the connected graph. |
edge_wt_matrix |
An optional matrix of |
keep_loops |
An option to simplify the fully connected graph by removing
loops (edges from and to the same node). The default value is |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph object # and add a directed and fully # connected graph with 3 nodes # and edges to and from all # pairs of nodes; with the option # `keep_loops = TRUE` nodes # will also have edges from # and to themselves graph <- create_graph() %>% add_full_graph( n = 3, keep_loops = TRUE ) # Get node information # from this graph graph %>% get_node_info() # Using `keep_loops = FALSE` # (the default) will remove # the loops create_graph() %>% add_full_graph(n = 3) %>% get_node_info() # Values can be set for # the node `label`, node # `type`, and edge `rel` graph <- create_graph() %>% add_full_graph( n = 3, type = "connected", label = c("1st", "2nd", "3rd"), rel = "connected_to" ) # Show the graph's node # data frame (ndf) graph %>% get_node_df() # Show the graph's edge # data frame (edf) graph %>% get_edge_df() # Create a fully-connected and # directed graph with 3 nodes, # and, where a matrix provides # edge weights; first, create the # matrix (with row names to be # used as node labels) suppressWarnings(RNGversion("3.5.0")) set.seed(23) edge_wt_matrix <- rnorm(100, 5, 2) %>% sample(9, FALSE) %>% round(2) %>% matrix( ncol = 3, nrow = 3, dimnames = list(c("a", "b", "c")) ) # Create the fully-connected # graph (without loops however) graph <- create_graph() %>% add_full_graph( n = 3, type = "weighted", label = TRUE, rel = "related_to", edge_wt_matrix = edge_wt_matrix, keep_loops = FALSE ) # Show the graph's node # data frame (ndf) graph %>% get_node_df() # Show the graph's edge # data frame (edf) graph %>% get_edge_df() # An undirected graph can # also use a matrix with # edge weights, but only # the lower triangle of # that matrix will be used create_graph(directed = FALSE) %>% add_full_graph( n = 3, type = "weighted", label = TRUE, rel = "related_to", edge_wt_matrix = edge_wt_matrix, keep_loops = FALSE ) %>% get_edge_df()
# Create a new graph object # and add a directed and fully # connected graph with 3 nodes # and edges to and from all # pairs of nodes; with the option # `keep_loops = TRUE` nodes # will also have edges from # and to themselves graph <- create_graph() %>% add_full_graph( n = 3, keep_loops = TRUE ) # Get node information # from this graph graph %>% get_node_info() # Using `keep_loops = FALSE` # (the default) will remove # the loops create_graph() %>% add_full_graph(n = 3) %>% get_node_info() # Values can be set for # the node `label`, node # `type`, and edge `rel` graph <- create_graph() %>% add_full_graph( n = 3, type = "connected", label = c("1st", "2nd", "3rd"), rel = "connected_to" ) # Show the graph's node # data frame (ndf) graph %>% get_node_df() # Show the graph's edge # data frame (edf) graph %>% get_edge_df() # Create a fully-connected and # directed graph with 3 nodes, # and, where a matrix provides # edge weights; first, create the # matrix (with row names to be # used as node labels) suppressWarnings(RNGversion("3.5.0")) set.seed(23) edge_wt_matrix <- rnorm(100, 5, 2) %>% sample(9, FALSE) %>% round(2) %>% matrix( ncol = 3, nrow = 3, dimnames = list(c("a", "b", "c")) ) # Create the fully-connected # graph (without loops however) graph <- create_graph() %>% add_full_graph( n = 3, type = "weighted", label = TRUE, rel = "related_to", edge_wt_matrix = edge_wt_matrix, keep_loops = FALSE ) # Show the graph's node # data frame (ndf) graph %>% get_node_df() # Show the graph's edge # data frame (edf) graph %>% get_edge_df() # An undirected graph can # also use a matrix with # edge weights, but only # the lower triangle of # that matrix will be used create_graph(directed = FALSE) %>% add_full_graph( n = 3, type = "weighted", label = TRUE, rel = "related_to", edge_wt_matrix = edge_wt_matrix, keep_loops = FALSE ) %>% get_edge_df()
Add global attributes of a specific type (either graph_attrs
, node_attrs
,
or edge_attrs
for a graph object of class dgr_graph
).
add_global_graph_attrs(graph, attr, value, attr_type)
add_global_graph_attrs(graph, attr, value, attr_type)
graph |
A graph object of class |
attr |
The name of the attribute to set for the |
value |
The value to be set for the chosen attribute specified in the
|
attr_type |
The specific type of global graph attribute to set. The type
is specified with |
A graph object of class dgr_graph
.
# Create a new graph with no # global graph attributes and # add a global graph attribute graph <- create_graph( attr_theme = NULL) %>% add_global_graph_attrs( attr = "overlap", value = "true", attr_type = "graph") # Verify that the attribute # addition has been made graph %>% get_global_graph_attr_info() # Add another attribute with # `add_global_graph_attrs()` graph <- graph %>% add_global_graph_attrs( attr = "penwidth", value = 12, attr_type = "node") # Verify that the attribute # addition has been made graph %>% get_global_graph_attr_info() # When adding an attribute where # `attr` and `attr_type` already # exists, the value provided will # serve as an update graph %>% add_global_graph_attrs( attr = "penwidth", value = 15, attr_type = "node") %>% get_global_graph_attr_info()
# Create a new graph with no # global graph attributes and # add a global graph attribute graph <- create_graph( attr_theme = NULL) %>% add_global_graph_attrs( attr = "overlap", value = "true", attr_type = "graph") # Verify that the attribute # addition has been made graph %>% get_global_graph_attr_info() # Add another attribute with # `add_global_graph_attrs()` graph <- graph %>% add_global_graph_attrs( attr = "penwidth", value = 12, attr_type = "node") # Verify that the attribute # addition has been made graph %>% get_global_graph_attr_info() # When adding an attribute where # `attr` and `attr_type` already # exists, the value provided will # serve as an update graph %>% add_global_graph_attrs( attr = "penwidth", value = 15, attr_type = "node") %>% get_global_graph_attr_info()
To an existing graph object, add a graph built according to the Erdos-Renyi
G(n, m) model. This uses the same constant probability when creating the
fixed number of edges. Thus for n
nodes there will be m
edges and, if the
loops
argument is set as TRUE
, then random loop edges will be part of
m
.
add_gnm_graph( graph, n, m, loops = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
add_gnm_graph( graph, n, m, loops = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the generated graph. |
m |
The number of edges in the generated graph. |
loops |
A logical value (default is |
type |
An optional string that describes the entity type for all the nodes to be added. |
label |
A boolean value where setting to |
rel |
An optional string for providing a relationship label to all edges to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
set_seed |
Supplying a value sets a random seed of the
|
A graph object of class dgr_graph
.
# Create an undirected GNM # graph with 100 nodes and # 120 edges gnm_graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 100, m = 120) # Get a count of nodes gnm_graph %>% count_nodes() # Get a count of edges gnm_graph %>% count_edges()
# Create an undirected GNM # graph with 100 nodes and # 120 edges gnm_graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 100, m = 120) # Get a count of nodes gnm_graph %>% count_nodes() # Get a count of edges gnm_graph %>% count_edges()
To an existing graph object, add a graph built according to the Erdos-Renyi G(n, p) model, which uses a constant probability when creating edges.
add_gnp_graph( graph, n, p, loops = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
add_gnp_graph( graph, n, p, loops = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the generated graph. |
p |
The probability of creating an edge between two arbitrary nodes. |
loops |
A logical value (default is |
type |
An optional string that describes the entity type for all the nodes to be added. |
label |
A boolean value where setting to |
rel |
An optional string for providing a relationship label to all edges to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
set_seed |
Supplying a value sets a random seed of the
|
A graph object of class dgr_graph
.
# Create an undirected GNP # graph with 100 nodes using # a probability value of 0.05 gnp_graph <- create_graph( directed = FALSE) %>% add_gnp_graph( n = 100, p = 0.05) # Get a count of nodes gnp_graph %>% count_nodes() # Get a count of edges gnp_graph %>% count_edges()
# Create an undirected GNP # graph with 100 nodes using # a probability value of 0.05 gnp_graph <- create_graph( directed = FALSE) %>% add_gnp_graph( n = 100, p = 0.05) # Get a count of nodes gnp_graph %>% count_nodes() # Get a count of edges gnp_graph %>% count_edges()
Add a graph function along with its arguments to be run at every graph transformation step.
add_graph_action(graph, fcn, ..., action_name = NULL)
add_graph_action(graph, fcn, ..., action_name = NULL)
graph |
A graph object of class |
fcn |
The name of the function to use. |
... |
Arguments and values to pass to the named function in |
action_name |
An optional name for labeling the action. |
A graph object of class dgr_graph
.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 22, set_seed = 23) # Add a graph action that sets a node # attr column with a function; the # main function `set_node_attr_w_fcn()` # uses the `get_betweenness()` function # to provide betweenness values in the # `btwns` column; this action will # occur whenever there is a function # called on the graph that modifies it # (e.g., `add_n_nodes()`) graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_betweenness", column_name = "btwns", action_name = "get_btwns") # To ensure that the action is # available in the graph, use the # `get_graph_actions()` function graph %>% get_graph_actions()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 22, set_seed = 23) # Add a graph action that sets a node # attr column with a function; the # main function `set_node_attr_w_fcn()` # uses the `get_betweenness()` function # to provide betweenness values in the # `btwns` column; this action will # occur whenever there is a function # called on the graph that modifies it # (e.g., `add_n_nodes()`) graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_betweenness", column_name = "btwns", action_name = "get_btwns") # To ensure that the action is # available in the graph, use the # `get_graph_actions()` function graph %>% get_graph_actions()
Add a graph object to an extant graph series object for storage of multiple graphs across a sequential or temporal one-dimensional array.
add_graph_to_graph_series(graph_series, graph)
add_graph_to_graph_series(graph_series, graph)
graph_series |
A graph series object to which the graph object will be added. |
graph |
A graph object to add to the graph series object. |
A graph series object of type dgr_graph_1D
.
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Count the number of graphs # in the graph series series %>% count_graphs_in_graph_series()
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Count the number of graphs # in the graph series series %>% count_graphs_in_graph_series()
With a graph object of class dgr_graph
, add a two-dimensional grid to the
graph.
add_grid_2d( graph, x, y, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_grid_2d( graph, x, y, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
x |
The number of nodes in the x direction. |
y |
The number of nodes in the y direction. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the grid. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and add # a 3 x 3 grid graph <- create_graph() %>% add_grid_2d( x = 3, y = 3, type = "grid") # Get node information # from this graph graph %>% get_node_info() # Attributes can be specified # in extra arguments and these # are applied in order; Usually # these attributes are applied # to nodes (e.g., `type` is a # node attribute) but the `rel` # attribute will apply to the # edges graph_w_attrs <- create_graph() %>% add_grid_2d( x = 3, y = 2, label = c("one", "two", "three", "four", "five", "six"), type = c("a", "a", "b", "b", "c", "c"), rel = "grid", node_data = node_data( value = c( 1.2, 8.4, 3.4, 5.2, 6.1, 2.6))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
# Create a new graph and add # a 3 x 3 grid graph <- create_graph() %>% add_grid_2d( x = 3, y = 3, type = "grid") # Get node information # from this graph graph %>% get_node_info() # Attributes can be specified # in extra arguments and these # are applied in order; Usually # these attributes are applied # to nodes (e.g., `type` is a # node attribute) but the `rel` # attribute will apply to the # edges graph_w_attrs <- create_graph() %>% add_grid_2d( x = 3, y = 2, label = c("one", "two", "three", "four", "five", "six"), type = c("a", "a", "b", "b", "c", "c"), rel = "grid", node_data = node_data( value = c( 1.2, 8.4, 3.4, 5.2, 6.1, 2.6))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
With a graph object of class dgr_graph
, add a three-dimensional grid to the
graph.
add_grid_3d( graph, x, y, z, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_grid_3d( graph, x, y, z, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
x |
The number of nodes in the x direction. |
y |
The number of nodes in the y direction. |
z |
The number of nodes in the z direction. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the grid. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and add # a 2 x 2 x 2 grid graph <- create_graph() %>% add_grid_3d( x = 2, y = 2, z = 2, type = "grid") # Get node information # from this graph graph %>% get_node_info() # Attributes can be specified # in extra arguments and these # are applied in order; Usually # these attributes are applied # to nodes (e.g., `type` is a # node attribute) but the `rel` # attribute will apply to the # edges graph_w_attrs <- create_graph() %>% add_grid_3d( x = 2, y = 2, z = 2, label = c( "one", "two", "three", "four", "five", "six", "seven", "eight"), type = c( "a", "a", "b", "b", "c", "c", "d", "d"), rel = "grid", node_data = node_data( value = c( 1.2, 8.4, 3.4, 5.2, 6.1, 2.6, 6.3, 9.3))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
# Create a new graph and add # a 2 x 2 x 2 grid graph <- create_graph() %>% add_grid_3d( x = 2, y = 2, z = 2, type = "grid") # Get node information # from this graph graph %>% get_node_info() # Attributes can be specified # in extra arguments and these # are applied in order; Usually # these attributes are applied # to nodes (e.g., `type` is a # node attribute) but the `rel` # attribute will apply to the # edges graph_w_attrs <- create_graph() %>% add_grid_3d( x = 2, y = 2, z = 2, label = c( "one", "two", "three", "four", "five", "six", "seven", "eight"), type = c( "a", "a", "b", "b", "c", "c", "d", "d"), rel = "grid", node_data = node_data( value = c( 1.2, 8.4, 3.4, 5.2, 6.1, 2.6, 6.3, 9.3))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
To an existing graph object, add a graph built by adding m
new edges at
each time step (where a node is added).
add_growing_graph( graph, n, m = 1, citation = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
add_growing_graph( graph, n, m = 1, citation = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the generated graph. |
m |
The number of edges added per time step. |
citation |
A logical value (default is |
type |
An optional string that describes the entity type for all the nodes to be added. |
label |
A logical value where setting to |
rel |
An optional string for providing a relationship label to all edges to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
set_seed |
Supplying a value sets a random seed of the
|
# Create a random, growing # citation graph with 100 # nodes, adding an edge after # each node addition growing_graph <- create_graph() %>% add_growing_graph( n = 100, m = 1, citation = TRUE, set_seed = 23) # Get a count of nodes growing_graph %>% count_nodes() # Get a count of edges growing_graph %>% count_edges()
# Create a random, growing # citation graph with 100 # nodes, adding an edge after # each node addition growing_graph <- create_graph() %>% add_growing_graph( n = 100, m = 1, citation = TRUE, set_seed = 23) # Get a count of nodes growing_graph %>% count_nodes() # Get a count of edges growing_graph %>% count_edges()
To an existing graph object, add several Erdos-Renyi random graphs (the islands) using a common set of parameters, connected together by a fixed number of edges.
add_islands_graph( graph, n_islands, island_size, p, edges_between, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
add_islands_graph( graph, n_islands, island_size, p, edges_between, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
graph |
A graph object of class |
n_islands |
The number of islands in the generated graph. |
island_size |
The size of the islands in the generated graph. |
p |
The probability of there being edges between the islands. |
edges_between |
The number of edges between islands. |
type |
An optional string that describes the entity type for all the nodes to be added. |
label |
A logical value where setting to |
rel |
An optional string for providing a relationship label to all edges to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
set_seed |
Supplying a value sets a random seed of the
|
# Create a graph of islands islands_graph <- create_graph() %>% add_islands_graph( n_islands = 4, island_size = 10, p = 0.5, edges_between = 1, set_seed = 23) # Get a count of nodes islands_graph %>% count_nodes() # Get a count of edges islands_graph %>% count_edges()
# Create a graph of islands islands_graph <- create_graph() %>% add_islands_graph( n_islands = 4, island_size = 10, p = 0.5, edges_between = 1, set_seed = 23) # Get a count of nodes islands_graph %>% count_nodes() # Get a count of edges islands_graph %>% count_edges()
Add n
new nodes to a graph object of class dgr_graph
which are clones of
a node already in the graph. All node attributes are preserved except for the
node label
attribute (to maintain the uniqueness of non-NA
node label
values). A vector of node label
can be provided to bind new labels to the
cloned nodes.
add_n_node_clones(graph, n, node, label = NULL)
add_n_node_clones(graph, n, node, label = NULL)
graph |
A graph object of class |
n |
The number of node clones to add to the graph. |
node |
A node ID corresponding to the graph node to be cloned. |
label |
An optional vector of node label values. The vector length
should correspond to the value set for |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with a path of # nodes; supply `label`, `type`, # and `value` node attributes graph <- create_graph() %>% add_path( n = 3, label = c("d", "g", "r"), type = c("a", "b", "c")) # Display the graph's internal # node data frame graph %>% get_node_df() # Create 3 clones of node `1` # but assign new node label # values (leaving `label` as # NULL yields NA values) graph <- graph %>% add_n_node_clones( n = 3, node = 1, label = c("x", "y", "z")) # Display the graph's internal # node data frame: nodes `4`, # `5`, and `6` are clones of `1` graph %>% get_node_df()
# Create a graph with a path of # nodes; supply `label`, `type`, # and `value` node attributes graph <- create_graph() %>% add_path( n = 3, label = c("d", "g", "r"), type = c("a", "b", "c")) # Display the graph's internal # node data frame graph %>% get_node_df() # Create 3 clones of node `1` # but assign new node label # values (leaving `label` as # NULL yields NA values) graph <- graph %>% add_n_node_clones( n = 3, node = 1, label = c("x", "y", "z")) # Display the graph's internal # node data frame: nodes `4`, # `5`, and `6` are clones of `1` graph %>% get_node_df()
Add n
new nodes to a graph object of class dgr_graph
. Optionally, set
node type
values for the new nodes.
add_n_nodes( graph, n, type = NULL, label = NULL, node_aes = NULL, node_data = NULL )
add_n_nodes( graph, n, type = NULL, label = NULL, node_aes = NULL, node_data = NULL )
graph |
A graph object of class |
n |
The number of new nodes to add to the graph. |
type |
An optional character vector that provides group identifiers for the nodes to be added. |
label |
An optional character object that describes the nodes to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create an empty graph and # add 5 nodes; these nodes # will be assigned ID values # from `1` to `5` graph <- create_graph() %>% add_n_nodes(n = 5) # Get the graph's node IDs graph %>% get_node_ids()
# Create an empty graph and # add 5 nodes; these nodes # will be assigned ID values # from `1` to `5` graph <- create_graph() %>% add_n_nodes(n = 5) # Get the graph's node IDs graph %>% get_node_ids()
Add n
new nodes to or from one or more nodes available as a selection in a
graph object of class dgr_graph
. New graph edges will all move either from
the nodes in the selection toward the newly created nodes (with the option
direction = "from"
), or to the selected nodes already in the graph (using
direction = "to"
). Optionally, set node type
and edge rel
values for
all the new nodes and edges created, respectively.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
add_n_nodes_ws( graph, n, direction = NULL, type = NULL, label = NULL, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_n_nodes_ws( graph, n, direction = NULL, type = NULL, label = NULL, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
n |
The number of new nodes to attach as successor nodes to the nodes in the selection. |
direction |
Using |
type |
An optional character vector that provides group identifiers for the nodes to be added. |
label |
An optional character object that describes the nodes to be added. |
rel |
An optional string to apply a |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create an empty graph, add a node to it, select # that node, and then add 5 more nodes to the graph # with edges from the original node to all of the # new nodes graph <- create_graph() %>% add_n_nodes(n = 1) %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "from") # Get the graph's nodes graph %>% get_node_ids() # Get the graph's edges graph %>% get_edges() # Create an empty graph, add a node to it, select # that node, and then add 5 more nodes to the graph # with edges toward the original node from all of # the new nodes graph <- create_graph() %>% add_n_nodes(n = 1) %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "to") # Get the graph's nodes graph %>% get_node_ids() # Get the graph's edges graph %>% get_edges()
# Create an empty graph, add a node to it, select # that node, and then add 5 more nodes to the graph # with edges from the original node to all of the # new nodes graph <- create_graph() %>% add_n_nodes(n = 1) %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "from") # Get the graph's nodes graph %>% get_node_ids() # Get the graph's edges graph %>% get_edges() # Create an empty graph, add a node to it, select # that node, and then add 5 more nodes to the graph # with edges toward the original node from all of # the new nodes graph <- create_graph() %>% add_n_nodes(n = 1) %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "to") # Get the graph's nodes graph %>% get_node_ids() # Get the graph's edges graph %>% get_edges()
With a graph object of class dgr_graph
, add a new node to the graph. One
can optionally provide node attributes for the created node. There is also
the option to create edges to and from existing nodes in the graph. Because
new edges can also be created through this function, there is the possibility
to set edge attributes for any new graph edges.
add_node( graph, type = NULL, label = NULL, from = NULL, to = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_node( graph, type = NULL, label = NULL, from = NULL, to = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
type |
An optional character object that acts as a group identifier for the node to be added. |
label |
An optional character object that describes the node. |
from |
An optional vector containing node IDs from which edges will be directed to the new node. |
to |
An optional vector containing node IDs to which edges will be directed from the new node. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create an empty graph and add 2 nodes by using # the `add_node()` function twice graph <- create_graph() %>% add_node() %>% add_node() # Get a count of all nodes # in the graph graph %>% count_nodes() # The nodes added were given # ID values `1` and `2`; obtain # the graph's node IDs graph %>% get_node_ids() # Add a node with a `type` # value defined graph <- graph %>% add_node(type = "person") # View the graph's internal # node data frame (ndf) graph %>% get_node_df()
# Create an empty graph and add 2 nodes by using # the `add_node()` function twice graph <- create_graph() %>% add_node() %>% add_node() # Get a count of all nodes # in the graph graph %>% count_nodes() # The nodes added were given # ID values `1` and `2`; obtain # the graph's node IDs graph %>% get_node_ids() # Add a node with a `type` # value defined graph <- graph %>% add_node(type = "person") # View the graph's internal # node data frame (ndf) graph %>% get_node_df()
Add new nodes to a graph object of class dgr_graph
which are clones of
nodes in an active selection of nodes. All node attributes are preserved
except for the node label
attribute (to maintain the uniqueness of non-NA
node label values). A vector of node label
can be provided to bind new
labels to the cloned nodes.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
add_node_clones_ws(graph, add_edges = FALSE, direction = NULL, label = NULL)
add_node_clones_ws(graph, add_edges = FALSE, direction = NULL, label = NULL)
graph |
A graph object of class |
add_edges |
An option for whether to add edges from the selected nodes to each of their clones, or, in the opposite direction. |
direction |
Using |
label |
An optional vector of node label values. The vector length should correspond to the number of nodes in the active selection of nodes. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with a path of # nodes; supply `label`, `type`, # and `value` node attributes, # and select the created nodes graph <- create_graph() %>% add_path( n = 3, label = c("d", "g", "r"), type = c("a", "b", "c")) %>% select_last_nodes_created() # Display the graph's internal # node data frame graph %>% get_node_df() # Create clones of all nodes # in the selection but assign # new node label values # (leaving `label` as NULL # yields NA values) graph <- graph %>% add_node_clones_ws( label = c("a", "b", "v")) # Display the graph's internal # node data frame: nodes `4`, # `5`, and `6` are clones of # `1`, `2`, and `3` graph %>% get_node_df() # Select the last nodes # created (`4`, `5`, and `6`) # and clone those nodes and # their attributes while # creating new edges between # the new and existing nodes graph <- graph %>% select_last_nodes_created() %>% add_node_clones_ws( add_edges = TRUE, direction = "to", label = c("t", "z", "s")) # Display the graph's internal # edge data frame; there are # edges between the selected # nodes and their clones graph %>% get_edge_df()
# Create a graph with a path of # nodes; supply `label`, `type`, # and `value` node attributes, # and select the created nodes graph <- create_graph() %>% add_path( n = 3, label = c("d", "g", "r"), type = c("a", "b", "c")) %>% select_last_nodes_created() # Display the graph's internal # node data frame graph %>% get_node_df() # Create clones of all nodes # in the selection but assign # new node label values # (leaving `label` as NULL # yields NA values) graph <- graph %>% add_node_clones_ws( label = c("a", "b", "v")) # Display the graph's internal # node data frame: nodes `4`, # `5`, and `6` are clones of # `1`, `2`, and `3` graph %>% get_node_df() # Select the last nodes # created (`4`, `5`, and `6`) # and clone those nodes and # their attributes while # creating new edges between # the new and existing nodes graph <- graph %>% select_last_nodes_created() %>% add_node_clones_ws( add_edges = TRUE, direction = "to", label = c("t", "z", "s")) # Display the graph's internal # edge data frame; there are # edges between the selected # nodes and their clones graph %>% get_edge_df()
With a graph object of class dgr_graph
add nodes from a node data frame to
that graph.
add_node_df(graph, node_df)
add_node_df(graph, node_df)
graph |
A graph object of class |
node_df |
A node data frame that is created using |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create an empty graph graph <- create_graph() # Create a node data frame (ndf) ndf <- create_node_df(n = 2) # Add the node data frame to # the graph object to create # a graph with nodes graph <- graph %>% add_node_df( node_df = ndf) # Inspect the graph's ndf graph %>% get_node_df() # Create another ndf ndf_2 <- create_node_df(n = 3) # Add the second node data # frame to the graph object # to add more nodes with # attributes to the graph graph <- graph %>% add_node_df( node_df = ndf_2) # View the graph's internal # node data frame using the # `get_node_df()` function graph %>% get_node_df()
# Create an empty graph graph <- create_graph() # Create a node data frame (ndf) ndf <- create_node_df(n = 2) # Add the node data frame to # the graph object to create # a graph with nodes graph <- graph %>% add_node_df( node_df = ndf) # Inspect the graph's ndf graph %>% get_node_df() # Create another ndf ndf_2 <- create_node_df(n = 3) # Add the second node data # frame to the graph object # to add more nodes with # attributes to the graph graph <- graph %>% add_node_df( node_df = ndf_2) # View the graph's internal # node data frame using the # `get_node_df()` function graph %>% get_node_df()
Add new nodes to a graph object of class dgr_graph
using distinct values
from one or more columns in a data frame. The values will serve as node
labels and the number of nodes added depends on the number of distinct values
found in the specified columns.
add_nodes_from_df_cols( graph, df, columns, type = NULL, keep_duplicates = FALSE )
add_nodes_from_df_cols( graph, df, columns, type = NULL, keep_duplicates = FALSE )
graph |
A graph object of class |
df |
A data frame from which values will be taken as new nodes for the graph. |
columns |
A character vector of column names or a numeric vector of
column numbers for the data frame supplied in |
type |
An optional, single-length character vector that provides a group identifier for the nodes to be added to the graph. |
keep_duplicates |
An option to exclude incoming nodes where the labels
(i.e., values found in columns of the specified |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create an empty graph graph <- create_graph() # Create a data frame from # which several columns have # values designated as graph nodes df <- data.frame( col_1 = c("f", "p", "q"), col_2 = c("q", "x", "f"), col_3 = c(1, 5, 3), col_4 = c("a", "v", "h"), stringsAsFactors = FALSE) # Add nodes from columns `col_1` # and `col_2` from the data frame # to the graph object graph <- graph %>% add_nodes_from_df_cols( df = df, columns = c("col_1", "col_2")) # Show the graph's node data # frame; duplicate labels are # prevented with `keep_duplicates = # FALSE`) graph %>% get_node_df() # Add new nodes from columns 3 and 4; # We can specify the columns by their # numbers as well graph <- graph %>% add_nodes_from_df_cols( df = df, columns = 3:4) # Show the graph's node data # frame; note that nodes didn't # get made with columns that # are not character class columns graph %>% get_node_df()
# Create an empty graph graph <- create_graph() # Create a data frame from # which several columns have # values designated as graph nodes df <- data.frame( col_1 = c("f", "p", "q"), col_2 = c("q", "x", "f"), col_3 = c(1, 5, 3), col_4 = c("a", "v", "h"), stringsAsFactors = FALSE) # Add nodes from columns `col_1` # and `col_2` from the data frame # to the graph object graph <- graph %>% add_nodes_from_df_cols( df = df, columns = c("col_1", "col_2")) # Show the graph's node data # frame; duplicate labels are # prevented with `keep_duplicates = # FALSE`) graph %>% get_node_df() # Add new nodes from columns 3 and 4; # We can specify the columns by their # numbers as well graph <- graph %>% add_nodes_from_df_cols( df = df, columns = 3:4) # Show the graph's node data # frame; note that nodes didn't # get made with columns that # are not character class columns graph %>% get_node_df()
Add nodes and their attributes to an existing graph object from data in a CSV file or a data frame.
add_nodes_from_table( graph, table, label_col = NULL, type_col = NULL, set_type = NULL, drop_cols = NULL )
add_nodes_from_table( graph, table, label_col = NULL, type_col = NULL, set_type = NULL, drop_cols = NULL )
graph |
A graph object of class |
table |
Either a path to a CSV file, or, a data frame object. |
label_col |
An option to apply a column of data in the table as |
type_col |
An option to apply a column of data in the table as |
set_type |
An optional string to apply a |
drop_cols |
An optional column selection statement for dropping columns
from the external table before inclusion as attributes in the graph's
internal node data frame. Several columns can be dropped by name using the
syntax |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# To add nodes from the dataset called # `currencies` (available as a dataset # in the package), call the # `add_nodes_from_table()` function # after creating an empty graph; new # node ID values will be created as # monotonically-increasing values graph_1 <- create_graph() %>% add_nodes_from_table( table = currencies) # View part of the graph's internal # node data frame (ndf) graph_1 %>% get_node_df() %>% .[, 1:5] %>% head() # If you would like to assign # any of the table's columns as # `type` or `label` attributes, # this can be done with the `type_col` # and `label_col` arguments; to set # a static `type` attribute for all # of the table records, use `set_type` graph_2 <- create_graph() %>% add_nodes_from_table( table = currencies, label_col = iso_4217_code, set_type = currency) # View part of the graph's internal ndf graph_2 %>% get_node_df() %>% .[, 1:5] %>% head() # Suppose we would like to not # include certain columns from the # external table in the resulting # graph; we can use the `drop_cols` # argument to choose which columns # to not include as attributes graph_3 <- create_graph() %>% add_nodes_from_table( table = currencies, label_col = iso_4217_code, set_type = currency, drop_cols = exponent & currency_name) # Show the node attribute names # for the graph; note that the # `exponent` and `currency_name` # columns are not attributes in the # graph's internal node data frame graph_3 %>% get_node_df() %>% colnames()
# To add nodes from the dataset called # `currencies` (available as a dataset # in the package), call the # `add_nodes_from_table()` function # after creating an empty graph; new # node ID values will be created as # monotonically-increasing values graph_1 <- create_graph() %>% add_nodes_from_table( table = currencies) # View part of the graph's internal # node data frame (ndf) graph_1 %>% get_node_df() %>% .[, 1:5] %>% head() # If you would like to assign # any of the table's columns as # `type` or `label` attributes, # this can be done with the `type_col` # and `label_col` arguments; to set # a static `type` attribute for all # of the table records, use `set_type` graph_2 <- create_graph() %>% add_nodes_from_table( table = currencies, label_col = iso_4217_code, set_type = currency) # View part of the graph's internal ndf graph_2 %>% get_node_df() %>% .[, 1:5] %>% head() # Suppose we would like to not # include certain columns from the # external table in the resulting # graph; we can use the `drop_cols` # argument to choose which columns # to not include as attributes graph_3 <- create_graph() %>% add_nodes_from_table( table = currencies, label_col = iso_4217_code, set_type = currency, drop_cols = exponent & currency_name) # Show the node attribute names # for the graph; note that the # `exponent` and `currency_name` # columns are not attributes in the # graph's internal node data frame graph_3 %>% get_node_df() %>% colnames()
To an existing graph object, add a graph built according to the Barabasi-Albert model, which uses preferential attachment in its stochastic algorithm.
add_pa_graph( graph, n, m = NULL, power = 1, out_dist = NULL, use_total_degree = FALSE, zero_appeal = 1, algo = "psumtree", type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
add_pa_graph( graph, n, m = NULL, power = 1, out_dist = NULL, use_total_degree = FALSE, zero_appeal = 1, algo = "psumtree", type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the preferential attachment graph. |
m |
The number of edges to add in each time step. |
power |
The power of the preferential attachment. The default value of
|
out_dist |
A numeric vector that provides the distribution of the number of edges to add in each time step. |
use_total_degree |
A logical value (default is |
zero_appeal |
A measure of the attractiveness of the nodes with no adjacent edges. |
algo |
The algorithm to use to generate the graph. The available options
are |
type |
An optional string that describes the entity type for all the nodes to be added. |
label |
A logical value where setting to |
rel |
An optional string for providing a relationship label to all edges to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
set_seed |
Supplying a value sets a random seed of the
|
# Create an undirected PA # graph with 100 nodes, adding # 2 edges at every time step pa_graph <- create_graph( directed = FALSE) %>% add_pa_graph( n = 100, m = 1) # Get a count of nodes pa_graph %>% count_nodes() # Get a count of edges pa_graph %>% count_edges()
# Create an undirected PA # graph with 100 nodes, adding # 2 edges at every time step pa_graph <- create_graph( directed = FALSE) %>% add_pa_graph( n = 100, m = 1) # Get a count of nodes pa_graph %>% count_nodes() # Get a count of edges pa_graph %>% count_edges()
With a graph object of class dgr_graph
, add a node path to the graph.
add_path( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_path( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the path. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the node path. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and add # 2 paths of varying lengths graph <- create_graph() %>% add_path( n = 4, type = "path") %>% add_path( n = 5, type = "path") # Get node information # from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_path( n = 3, label = c( "one", "two", "three"), type = c( "a", "a", "b"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4)), edge_data = edge_data( value = rnorm( n = 2, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
# Create a new graph and add # 2 paths of varying lengths graph <- create_graph() %>% add_path( n = 4, type = "path") %>% add_path( n = 5, type = "path") # Get node information # from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_path( n = 3, label = c( "one", "two", "three"), type = c( "a", "a", "b"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4)), edge_data = edge_data( value = rnorm( n = 2, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
With a graph object of class dgr_graph
, add a node prism to the graph.
add_prism( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_prism( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
n |
The number of nodes describing the shape of the prism. For example,
the triangular prism has |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the node prism. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and # add 2 prisms graph <- create_graph() %>% add_prism( n = 3, type = "prism", label = "a") %>% add_prism( n = 3, type = "prism", label = "b") # Get node information from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_prism( n = 3, label = c( "one", "two", "three", "four", "five", "six"), type = c( "a", "a", "b", "b", "c", "c"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4, 3.2, 5.3, 6.2)), edge_data = edge_data( value = rnorm( n = 9, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
# Create a new graph and # add 2 prisms graph <- create_graph() %>% add_prism( n = 3, type = "prism", label = "a") %>% add_prism( n = 3, type = "prism", label = "b") # Get node information from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_prism( n = 3, label = c( "one", "two", "three", "four", "five", "six"), type = c( "a", "a", "b", "b", "c", "c"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4, 3.2, 5.3, 6.2)), edge_data = edge_data( value = rnorm( n = 9, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
Add edges in the opposite direction of one or more edges available as an edge
selection in a graph object of class dgr_graph
. New graph edges have the
opposite edge definitions as those in the selection. For example, a graph
with the edge 1->2
in its active selection will gain a new 2->1
edge.
There is also the option to assign a common rel
grouping to the newly
created edges. Upon addition of the edges, the edge selection will be
retained for further selection or traversal operations.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
add_reverse_edges_ws(graph, rel = NULL, edge_aes = NULL, edge_data = NULL)
add_reverse_edges_ws(graph, rel = NULL, edge_aes = NULL, edge_data = NULL)
graph |
A graph object of class |
rel |
An optional string to apply a |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create an empty graph, add 2 nodes to it, # and create the edge `1->2` graph <- create_graph() %>% add_n_nodes( n = 2, type = "type_a", label = c("a_1", "a_2")) %>% add_edge( from = 1, to = 2, rel = "a") # Get the graph's edges graph %>% get_edge_ids() # Select the edge and create 2 additional edges # with the opposite definition of `1->2`, which # is `2->1`; also, apply, different `rel` values # (`b` and `c`) graph <- graph %>% select_edges() %>% add_reverse_edges_ws(rel = "b") %>% add_reverse_edges_ws(rel = "c") %>% clear_selection() # Get the graph's edge data frame graph %>% get_edge_df()
# Create an empty graph, add 2 nodes to it, # and create the edge `1->2` graph <- create_graph() %>% add_n_nodes( n = 2, type = "type_a", label = c("a_1", "a_2")) %>% add_edge( from = 1, to = 2, rel = "a") # Get the graph's edges graph %>% get_edge_ids() # Select the edge and create 2 additional edges # with the opposite definition of `1->2`, which # is `2->1`; also, apply, different `rel` values # (`b` and `c`) graph <- graph %>% select_edges() %>% add_reverse_edges_ws(rel = "b") %>% add_reverse_edges_ws(rel = "c") %>% clear_selection() # Get the graph's edge data frame graph %>% get_edge_df()
To an existing graph object, add a graph built according to the Watts-Strogatz small-world model, which uses a lattice along with a rewiring probability to randomly modify edge definitions.
add_smallworld_graph( graph, dimension, size, neighborhood, p, loops = FALSE, multiple = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
add_smallworld_graph( graph, dimension, size, neighborhood, p, loops = FALSE, multiple = FALSE, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL, set_seed = NULL )
graph |
A graph object of class |
dimension |
The dimension of the starting lattice. |
size |
The size of the lattice across each dimension. |
neighborhood |
The neighborhood where the lattice nodes are to be connected. |
p |
The rewiring probability. |
loops |
A logical value (default is |
multiple |
A logical value (default is |
type |
An optional string that describes the entity type for all the nodes to be added. |
label |
A logical value where setting to |
rel |
An optional string for providing a relationship label to all edges to be added. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
set_seed |
Supplying a value sets a random seed of the
|
A graph object of class dgr_graph
.
# Create an undirected smallworld # graph with 100 nodes using # a probability value of 0.05 smallworld_graph <- create_graph( directed = FALSE) %>% add_smallworld_graph( dimension = 1, size = 50, neighborhood = 1, p = 0.05, set_seed = 23) # Get a count of nodes smallworld_graph %>% count_nodes() # Get a count of edges smallworld_graph %>% count_edges()
# Create an undirected smallworld # graph with 100 nodes using # a probability value of 0.05 smallworld_graph <- create_graph( directed = FALSE) %>% add_smallworld_graph( dimension = 1, size = 50, neighborhood = 1, p = 0.05, set_seed = 23) # Get a count of nodes smallworld_graph %>% count_nodes() # Get a count of edges smallworld_graph %>% count_edges()
With a graph object of class dgr_graph
, add a node star to the graph.
add_star( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
add_star( graph, n, type = NULL, label = TRUE, rel = NULL, node_aes = NULL, edge_aes = NULL, node_data = NULL, edge_data = NULL )
graph |
A graph object of class |
n |
The number of nodes comprising the star. The first node will be the center of the star. |
type |
An optional string that describes the entity type for the nodes to be added. |
label |
Either a vector object of length |
rel |
An optional string for providing a relationship label to all new edges created in the node star. |
node_aes |
An optional list of named vectors comprising node aesthetic
attributes. The helper function |
edge_aes |
An optional list of named vectors comprising edge aesthetic
attributes. The helper function |
node_data |
An optional list of named vectors comprising node data
attributes. The helper function |
edge_data |
An optional list of named vectors comprising edge data
attributes. The helper function |
A graph object of class dgr_graph
.
# Create a new graph and add 2 # stars of varying numbers of nodes graph <- create_graph() %>% add_star( n = 4, type = "four_star") %>% add_star( n = 5, type = "five_star") # Get node information from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_star( n = 4, label = c( "one", "two", "three", "four"), type = c( "a", "a", "b", "b"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4, 8.3)), edge_data = edge_data( value = rnorm( n = 3, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
# Create a new graph and add 2 # stars of varying numbers of nodes graph <- create_graph() %>% add_star( n = 4, type = "four_star") %>% add_star( n = 5, type = "five_star") # Get node information from this graph graph %>% get_node_info() # Node and edge aesthetic and data # attributes can be specified in # the `node_aes`, `edge_aes`, # `node_data`, and `edge_data` # arguments suppressWarnings(RNGversion("3.5.0")) set.seed(23) graph_w_attrs <- create_graph() %>% add_star( n = 4, label = c( "one", "two", "three", "four"), type = c( "a", "a", "b", "b"), rel = "A", node_aes = node_aes( fillcolor = "steelblue"), edge_aes = edge_aes( color = "red", penwidth = 1.2), node_data = node_data( value = c( 1.6, 2.8, 3.4, 8.3)), edge_data = edge_data( value = rnorm( n = 3, mean = 5.0, sd = 1.0))) # Get the graph's node data frame graph_w_attrs %>% get_node_df() # Get the graph's edge data frame graph_w_attrs %>% get_edge_df()
Clear the selection of nodes or edges within a graph object.
clear_selection(graph)
clear_selection(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a graph with # a single path graph <- create_graph() %>% add_path(n = 5) # Select nodes with IDs `1` # and `3` graph <- graph %>% select_nodes( nodes = c(1, 3)) # Verify that a node selection # has been made graph %>% get_selection() # Clear the selection with # `clear_selection()` graph <- graph %>% clear_selection() # Verify that the node # selection has been cleared graph %>% get_selection()
# Create a graph with # a single path graph <- create_graph() %>% add_path(n = 5) # Select nodes with IDs `1` # and `3` graph <- graph %>% select_nodes( nodes = c(1, 3)) # Verify that a node selection # has been made graph %>% get_selection() # Clear the selection with # `clear_selection()` graph <- graph %>% clear_selection() # Verify that the node # selection has been cleared graph %>% get_selection()
Within a graph's internal edge data frame (edf), use a categorical edge attribute to generate a new edge attribute with color values.
colorize_edge_attrs( graph, edge_attr_from, edge_attr_to, cut_points = NULL, palette = "Spectral", alpha = NULL, reverse_palette = FALSE, default_color = "#D9D9D9" )
colorize_edge_attrs( graph, edge_attr_from, edge_attr_to, cut_points = NULL, palette = "Spectral", alpha = NULL, reverse_palette = FALSE, default_color = "#D9D9D9" )
graph |
A graph object of class |
edge_attr_from |
The name of the edge attribute column from which color values will be based. |
edge_attr_to |
The name of the new edge attribute to which the color values will be applied. |
cut_points |
An optional vector of numerical breaks for bucketizing continuous numerical values available in a edge attribute column. |
palette |
Can either be: (1) a palette name from the RColorBrewer
package (e.g., |
alpha |
An optional alpha transparency value to apply to the generated
colors. Should be in the range of |
reverse_palette |
An option to reverse the order of colors in the chosen
palette. The default is |
default_color |
A hexadecimal color value to use for instances when the
values do not fall into the bucket ranges specified in the |
A graph object of class dgr_graph
.
# Create a graph with 5 # nodes and 4 edges graph <- create_graph() %>% add_path(n = 5) %>% set_edge_attrs( edge_attr = weight, values = c(3.7, 6.3, 9.2, 1.6)) # We can bucketize values in # the edge `weight` attribute using # `cut_points` and, by doing so, # assign colors to each of the # bucketed ranges (for values not # part of any bucket, a gray color # is assigned by default) graph <- graph %>% colorize_edge_attrs( edge_attr_from = weight, edge_attr_to = color, cut_points = c(0, 2, 4, 6, 8, 10), palette = "RdYlGn") # Now there will be a `color` # edge attribute with distinct # colors (from the RColorBrewer # Red-Yellow-Green palette) graph %>% get_edge_df()
# Create a graph with 5 # nodes and 4 edges graph <- create_graph() %>% add_path(n = 5) %>% set_edge_attrs( edge_attr = weight, values = c(3.7, 6.3, 9.2, 1.6)) # We can bucketize values in # the edge `weight` attribute using # `cut_points` and, by doing so, # assign colors to each of the # bucketed ranges (for values not # part of any bucket, a gray color # is assigned by default) graph <- graph %>% colorize_edge_attrs( edge_attr_from = weight, edge_attr_to = color, cut_points = c(0, 2, 4, 6, 8, 10), palette = "RdYlGn") # Now there will be a `color` # edge attribute with distinct # colors (from the RColorBrewer # Red-Yellow-Green palette) graph %>% get_edge_df()
Within a graph's internal node data frame (ndf), use a categorical node attribute to generate a new node attribute with color values.
colorize_node_attrs( graph, node_attr_from, node_attr_to, cut_points = NULL, palette = "Spectral", alpha = NULL, reverse_palette = FALSE, default_color = "#D9D9D9" )
colorize_node_attrs( graph, node_attr_from, node_attr_to, cut_points = NULL, palette = "Spectral", alpha = NULL, reverse_palette = FALSE, default_color = "#D9D9D9" )
graph |
A graph object of class |
node_attr_from |
The name of the node attribute column from which color values will be based. |
node_attr_to |
The name of the new node attribute to which the color values will be applied. |
cut_points |
An optional vector of numerical breaks for bucketizing continuous numerical values available in a edge attribute column. |
palette |
Can either be: (1) a palette name from the RColorBrewer
package (e.g., |
alpha |
An optional alpha transparency value to apply to the generated
colors. Should be in the range of |
reverse_palette |
An option to reverse the order of colors in the chosen
palette. The default is |
default_color |
A hexadecimal color value to use for instances when the
values do not fall into the bucket ranges specified in the |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with 8 # nodes and 7 edges graph <- create_graph() %>% add_path(n = 8) %>% set_node_attrs( node_attr = weight, values = c( 8.2, 3.7, 6.3, 9.2, 1.6, 2.5, 7.2, 5.4)) # Find group membership values for all nodes # in the graph through the Walktrap community # finding algorithm and join those group values # to the graph's internal node data frame (ndf) # with the `join_node_attrs()` function graph <- graph %>% join_node_attrs( df = get_cmty_walktrap(.)) # Inspect the number of distinct communities graph %>% get_node_attrs( node_attr = walktrap_group) %>% unique() %>% sort() # Visually distinguish the nodes in the different # communities by applying colors using the # `colorize_node_attrs()` function; specifically, # set different `fillcolor` values with an alpha # value of 90 and apply opaque colors to the node # border (with the `color` node attribute) graph <- graph %>% colorize_node_attrs( node_attr_from = walktrap_group, node_attr_to = fillcolor, palette = "Greens", alpha = 90) %>% colorize_node_attrs( node_attr_from = walktrap_group, node_attr_to = color, palette = "viridis", alpha = 80) # Show the graph's internal node data frame graph %>% get_node_df() # Create a graph with 8 nodes and 7 edges graph <- create_graph() %>% add_path(n = 8) %>% set_node_attrs( node_attr = weight, values = c( 8.2, 3.7, 6.3, 9.2, 1.6, 2.5, 7.2, 5.4)) # We can bucketize values in `weight` using # `cut_points` and assign colors to each of the # bucketed ranges (for values not part of any # bucket, a gray color is assigned by default) graph <- graph %>% colorize_node_attrs( node_attr_from = weight, node_attr_to = fillcolor, cut_points = c(1, 3, 5, 7, 9)) # Now there will be a `fillcolor` node attribute # with distinct colors (the `#D9D9D9` color is # the default `gray85` color) graph %>% get_node_df()
# Create a graph with 8 # nodes and 7 edges graph <- create_graph() %>% add_path(n = 8) %>% set_node_attrs( node_attr = weight, values = c( 8.2, 3.7, 6.3, 9.2, 1.6, 2.5, 7.2, 5.4)) # Find group membership values for all nodes # in the graph through the Walktrap community # finding algorithm and join those group values # to the graph's internal node data frame (ndf) # with the `join_node_attrs()` function graph <- graph %>% join_node_attrs( df = get_cmty_walktrap(.)) # Inspect the number of distinct communities graph %>% get_node_attrs( node_attr = walktrap_group) %>% unique() %>% sort() # Visually distinguish the nodes in the different # communities by applying colors using the # `colorize_node_attrs()` function; specifically, # set different `fillcolor` values with an alpha # value of 90 and apply opaque colors to the node # border (with the `color` node attribute) graph <- graph %>% colorize_node_attrs( node_attr_from = walktrap_group, node_attr_to = fillcolor, palette = "Greens", alpha = 90) %>% colorize_node_attrs( node_attr_from = walktrap_group, node_attr_to = color, palette = "viridis", alpha = 80) # Show the graph's internal node data frame graph %>% get_node_df() # Create a graph with 8 nodes and 7 edges graph <- create_graph() %>% add_path(n = 8) %>% set_node_attrs( node_attr = weight, values = c( 8.2, 3.7, 6.3, 9.2, 1.6, 2.5, 7.2, 5.4)) # We can bucketize values in `weight` using # `cut_points` and assign colors to each of the # bucketed ranges (for values not part of any # bucket, a gray color is assigned by default) graph <- graph %>% colorize_node_attrs( node_attr_from = weight, node_attr_to = fillcolor, cut_points = c(1, 3, 5, 7, 9)) # Now there will be a `fillcolor` node attribute # with distinct colors (the `#D9D9D9` color is # the default `gray85` color) graph %>% get_node_df()
Combine several edge data frames in the style of rbind()
, except, it works
regardless of the number and ordering of the columns.
combine_edfs(...)
combine_edfs(...)
... |
Two or more edge data frames, which contain edge IDs and associated attributes. |
A combined edge data frame.
# Create an edge data frame (edf) edf_1 <- create_edge_df( from = c(1, 1, 2, 3), to = c(2, 4, 4, 1), rel = "requires", color = "green", data = c(2.7, 8.9, 2.6, 0.6)) # Create a second edge data frame edf_2 <- create_edge_df( from = c(5, 7, 8, 8), to = c(7, 8, 6, 5), rel = "receives", arrowhead = "dot", color = "red") # Combine the two edge data frames all_edges <- combine_edfs(edf_1, edf_2) # View the combined edge data frame all_edges
# Create an edge data frame (edf) edf_1 <- create_edge_df( from = c(1, 1, 2, 3), to = c(2, 4, 4, 1), rel = "requires", color = "green", data = c(2.7, 8.9, 2.6, 0.6)) # Create a second edge data frame edf_2 <- create_edge_df( from = c(5, 7, 8, 8), to = c(7, 8, 6, 5), rel = "receives", arrowhead = "dot", color = "red") # Combine the two edge data frames all_edges <- combine_edfs(edf_1, edf_2) # View the combined edge data frame all_edges
Combine two graphs in order to make a new graph.
combine_graphs(x, y)
combine_graphs(x, y)
x |
A |
y |
A |
A graph object of class dgr_graph
.
# Create a graph with a cycle # containing 6 nodes graph_cycle <- create_graph() %>% add_cycle(n = 6) # Create a random graph with # 8 nodes and 15 edges using the # `add_gnm_graph()` function graph_random <- create_graph() %>% add_gnm_graph( n = 8, m = 15, set_seed = 23) # Combine the two graphs in a # union operation combined_graph <- combine_graphs( graph_cycle, graph_random) # Get the number of nodes in # the combined graph combined_graph %>% count_nodes() # The `combine_graphs()` # function will renumber # node ID values in graph `y` # during the union; this ensures # that node ID values are unique combined_graph %>% get_node_ids()
# Create a graph with a cycle # containing 6 nodes graph_cycle <- create_graph() %>% add_cycle(n = 6) # Create a random graph with # 8 nodes and 15 edges using the # `add_gnm_graph()` function graph_random <- create_graph() %>% add_gnm_graph( n = 8, m = 15, set_seed = 23) # Combine the two graphs in a # union operation combined_graph <- combine_graphs( graph_cycle, graph_random) # Get the number of nodes in # the combined graph combined_graph %>% count_nodes() # The `combine_graphs()` # function will renumber # node ID values in graph `y` # during the union; this ensures # that node ID values are unique combined_graph %>% get_node_ids()
Combine several node data frames into a single node data frame.
combine_ndfs(...)
combine_ndfs(...)
... |
Two or more node data frames, which contain node IDs and associated attributes. |
A combined node data frame.
# Create two node data frames node_df_1 <- create_node_df( n = 2, type = c("a", "b"), label = c("D", "Z"), value = c(8.4, 3.4)) node_df_2 <- create_node_df( n = 2, type = c("b", "c"), label = c("U", "A"), value = c(0.4, 3.4)) # Combine the ndfs using the # `combine_ndfs()` function node_df_combined <- combine_ndfs( node_df_1, node_df_2) # Inspect the combined ndf node_df_combined
# Create two node data frames node_df_1 <- create_node_df( n = 2, type = c("a", "b"), label = c("D", "Z"), value = c(8.4, 3.4)) node_df_2 <- create_node_df( n = 2, type = c("b", "c"), label = c("U", "A"), value = c(0.4, 3.4)) # Combine the ndfs using the # `combine_ndfs()` function node_df_combined <- combine_ndfs( node_df_1, node_df_2) # Inspect the combined ndf node_df_combined
Within a graph's internal edge data frame (edf), copy the contents an existing edge attribute and create a distinct edge attribute within the edf with a different attribute name.
copy_edge_attrs(graph, edge_attr_from, edge_attr_to)
copy_edge_attrs(graph, edge_attr_from, edge_attr_to)
graph |
A graph object of class |
edge_attr_from |
The name of the edge attribute column from which values will be copied. |
edge_attr_to |
The name of the new edge attribute column to which the copied values will be placed. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) %>% set_edge_attrs( edge_attr = color, values = "green") # Get the graph's internal # edf to show which edge # attributes are available graph %>% get_edge_df() # Make a copy the `color` # edge attribute as the # `color_2` edge attribute graph <- graph %>% copy_edge_attrs( edge_attr_from = color, edge_attr_to = color_2) # Get the graph's internal # edf to show that the edge # attribute had been copied graph %>% get_edge_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) %>% set_edge_attrs( edge_attr = color, values = "green") # Get the graph's internal # edf to show which edge # attributes are available graph %>% get_edge_df() # Make a copy the `color` # edge attribute as the # `color_2` edge attribute graph <- graph %>% copy_edge_attrs( edge_attr_from = color, edge_attr_to = color_2) # Get the graph's internal # edf to show that the edge # attribute had been copied graph %>% get_edge_df()
Within a graph's internal node data frame (ndf), copy the contents an existing node attribute and create a distinct node attribute within the ndf with a different attribute name.
copy_node_attrs(graph, node_attr_from, node_attr_to)
copy_node_attrs(graph, node_attr_from, node_attr_to)
graph |
A graph object of class |
node_attr_from |
The name of the node attribute column from which values will be copied. |
node_attr_to |
The name of the new node attribute column to which the copied values will be placed. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = "circle") %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal # ndf to show which node # attributes are available graph %>% get_node_df() # Make a copy the `value` # node attribute as the # `width` node attribute graph <- graph %>% copy_node_attrs( node_attr_from = value, node_attr_to = size) # Get the graph's internal # ndf to show that the node # attribute had been copied graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = "circle") %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal # ndf to show which node # attributes are available graph %>% get_node_df() # Make a copy the `value` # node attribute as the # `width` node attribute graph <- graph %>% copy_node_attrs( node_attr_from = value, node_attr_to = size) # Get the graph's internal # ndf to show that the node # attribute had been copied graph %>% get_node_df()
Get the number of asymmetrically-connected node pairs. This works for directed graphs.
count_asymmetric_node_pairs(graph)
count_asymmetric_node_pairs(graph)
graph |
A graph object of class |
A single numeric value representing the number of asymmetrically-connected node pairs.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of asymmetrically- # connected node pairs graph %>% count_asymmetric_node_pairs() # Create a full graph and then # count the asymmetrically- # connected node pairs create_graph() %>% add_full_graph(n = 10) %>% count_asymmetric_node_pairs()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of asymmetrically- # connected node pairs graph %>% count_asymmetric_node_pairs() # Create a full graph and then # count the asymmetrically- # connected node pairs create_graph() %>% add_full_graph(n = 10) %>% count_asymmetric_node_pairs()
Get the number of automorphisms the graph contains. An automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving edge-node connectivity.
count_automorphisms(graph)
count_automorphisms(graph)
graph |
A graph object of class |
A single numeric value representing the number of automorphisms the graph contains.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of automorphisms graph %>% count_automorphisms() # Create a full graph and then # count the automorphisms create_graph() %>% add_full_graph(n = 10) %>% count_automorphisms()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of automorphisms graph %>% count_automorphisms() # Create a full graph and then # count the automorphisms create_graph() %>% add_full_graph(n = 10) %>% count_automorphisms()
From a graph object of class dgr_graph
, get a count of edges in the graph.
count_edges(graph)
count_edges(graph)
graph |
A graph object of class |
A single-length numeric vector.
# Create a graph with a # path of nodes and 3 # unconnected nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 3) # Get a count of all edges # in the graph graph %>% count_edges()
# Create a graph with a # path of nodes and 3 # unconnected nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 3) # Get a count of all edges # in the graph graph %>% count_edges()
Counts the total number of graphs in a graph series object.
count_graphs_in_graph_series(graph_series)
count_graphs_in_graph_series(graph_series)
graph_series |
A graph series object of type |
A numeric vector representing a count of graphs in a graph series object.
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Count the number of graphs # in the graph series series %>% count_graphs_in_graph_series()
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Count the number of graphs # in the graph series series %>% count_graphs_in_graph_series()
From a graph object of class dgr_graph
, get a count of all loop edges in
the graph.
count_loop_edges(graph)
count_loop_edges(graph)
graph |
A graph object of class |
A numeric vector of single length.
# Create an undirected, full graph # with 3 nodes and all possible # edges, including loop edges graph <- create_graph( directed = FALSE) %>% add_full_graph( n = 3, keep_loops = TRUE) # Get a count of all loop edges # in the graph graph %>% count_loop_edges()
# Create an undirected, full graph # with 3 nodes and all possible # edges, including loop edges graph <- create_graph( directed = FALSE) %>% add_full_graph( n = 3, keep_loops = TRUE) # Get a count of all loop edges # in the graph graph %>% count_loop_edges()
Get the number of mutually-connected node pairs. This works for directed graphs.
count_mutual_node_pairs(graph)
count_mutual_node_pairs(graph)
graph |
A graph object of class |
A single numeric value representing the number of mutually-connected node pairs.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of mutually-connected # node pairs graph %>% count_mutual_node_pairs() # Create a full graph and then # count the mutually-connected # node pairs create_graph() %>% add_full_graph(n = 10) %>% count_mutual_node_pairs()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of mutually-connected # node pairs graph %>% count_mutual_node_pairs() # Create a full graph and then # count the mutually-connected # node pairs create_graph() %>% add_full_graph(n = 10) %>% count_mutual_node_pairs()
From a graph object of class dgr_graph
, get a count of nodes in the graph.
count_nodes(graph)
count_nodes(graph)
graph |
A graph object of class |
A numeric vector of single length.
# Create a graph with a # path of nodes and 3 # unconnected nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 3) # Get a count of all nodes # in the graph graph %>% count_nodes()
# Create a graph with a # path of nodes and 3 # unconnected nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 3) # Get a count of all nodes # in the graph graph %>% count_nodes()
Get the number of strongly-connected components in the graph.
count_s_connected_cmpts(graph)
count_s_connected_cmpts(graph)
graph |
A graph object of class |
A single integer value representing the number of strongly-connected graph components.
# Create a graph and add # several graph islands graph <- create_graph() %>% add_islands_graph( n_islands = 4, island_size = 10, p = 1/5, edges_between = 1, set_seed = 23) # Get a count of strongly-connected # components in the graph graph %>% count_s_connected_cmpts()
# Create a graph and add # several graph islands graph <- create_graph() %>% add_islands_graph( n_islands = 4, island_size = 10, p = 1/5, edges_between = 1, set_seed = 23) # Get a count of strongly-connected # components in the graph graph %>% count_s_connected_cmpts()
Get the number of unconnected node pairs. This works for directed graphs.
count_unconnected_node_pairs(graph)
count_unconnected_node_pairs(graph)
graph |
A graph object of class |
A single numeric value representing the number of unconnected node pairs.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of unconnected node # pairs in the graph graph %>% count_unconnected_node_pairs() # Create a full graph and then # count all unconnected node pairs create_graph() %>% add_full_graph(n = 10) %>% count_unconnected_node_pairs()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Get a count of unconnected node # pairs in the graph graph %>% count_unconnected_node_pairs() # Create a full graph and then # count all unconnected node pairs create_graph() %>% add_full_graph(n = 10) %>% count_unconnected_node_pairs()
From a graph object of class dgr_graph
, get a count of nodes in the graph
that are not connected to any other node.
count_unconnected_nodes(graph)
count_unconnected_nodes(graph)
graph |
A graph object of class |
A numeric vector of single length.
# Create a graph with a # path of nodes and 3 # unconnected nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 3) # Get a count of all nodes # in the graph graph %>% count_nodes() # Get a count of all # unconnected nodes in the # graph graph %>% count_unconnected_nodes()
# Create a graph with a # path of nodes and 3 # unconnected nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 3) # Get a count of all nodes # in the graph graph %>% count_nodes() # Get a count of all # unconnected nodes in the # graph graph %>% count_unconnected_nodes()
Get the number of weakly-connected components in the graph.
count_w_connected_cmpts(graph)
count_w_connected_cmpts(graph)
graph |
A graph object of class |
A single integer value representing the number of weakly-connected graph components.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) %>% add_cycle(n = 5) # Get a count of weakly-connected # components in the graph graph %>% count_w_connected_cmpts()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) %>% add_cycle(n = 5) # Get a count of weakly-connected # components in the graph graph %>% count_w_connected_cmpts()
Combine several vectors for edges and their attributes into a data frame, which can be combined with other similarly-generated data frames, or, added to a graph object. An edge data frame, or edf, has at least the following columns:
id
(of type integer
)
from
(of type integer
)
to
(of type integer
)
rel
(of type character
)
An arbitrary number of additional columns containing aesthetic or data
attributes can be part of the edf, so long as they follow the aforementioned
columns. Some examples are included in edge_aes()
create_edge_df(from, to, rel = NULL, ...)
create_edge_df(from, to, rel = NULL, ...)
from |
A vector of node ID values from which edges are outbound. The
vector length must equal that of the |
to |
A vector of node ID values to which edges are incoming. The vector
length must equal that of the |
rel |
An optional |
... |
One or more vectors for associated edge attributes. Can be some of |
An edge data frame (edf).
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a simple edge data frame (edf) and # view the results edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "a") # Display the edge data frame edf # Create an edf with additional edge # attributes (where their classes will # be inferred from the input vectors) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "a", length = c(50, 100, 250), color = "green", width = c(1, 5, 2)) # Display the edge data frame edf
# Create a simple edge data frame (edf) and # view the results edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "a") # Display the edge data frame edf # Create an edf with additional edge # attributes (where their classes will # be inferred from the input vectors) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "a", length = c(50, 100, 250), color = "green", width = c(1, 5, 2)) # Display the edge data frame edf
Generates a graph object with the option to use node data frames (ndfs) and/or edge data frames (edfs) to populate the initial graph.
create_graph( nodes_df = NULL, edges_df = NULL, directed = TRUE, graph_name = NULL, attr_theme = "default", write_backups = FALSE, display_msgs = FALSE )
create_graph( nodes_df = NULL, edges_df = NULL, directed = TRUE, graph_name = NULL, attr_theme = "default", write_backups = FALSE, display_msgs = FALSE )
nodes_df |
An optional data frame containing, at minimum, a column
(called |
edges_df |
An optional data frame containing, at minimum, two columns
(called |
directed |
With |
graph_name |
An optional string for labeling the graph object. |
attr_theme |
The theme (i.e., collection of |
write_backups |
An option to write incremental backups of changing graph
states to disk. If |
display_msgs |
An option to display messages primarily concerned with
changes in graph selections. By default, this is |
A graph object of class dgr_graph
.
# With `create_graph()` we can # simply create an empty graph (and # add in nodes and edges later # with other functions) graph <- create_graph() # A graph can be created with # nodes and without having any edges; # this can be done in 2 steps: # 1. create a node data frame (ndf) # using `create_node_df()` ndf <- create_node_df(n = 4) # 2. create a new graph object with # `create_graph()` and then pass # in the ndf to `nodes_df` graph <- create_graph( nodes_df = ndf) # Get information on the graph's nodes graph %>% get_node_info() # You can create a similar graph with # just nodes but also providing a # range of attributes for the nodes # (e.g., types, labels, or arbitrary # 'values') ndf <- create_node_df( n = 4, label = TRUE, type = c("type_1", "type_1", "type_5", "type_2"), shape = c("circle", "circle", "rectangle", "rectangle"), values = c(3.5, 2.6, 9.4, 2.7)) graph <- create_graph(nodes_df = ndf) # Get information on the graph's # internal node data frame (ndf) graph %>% get_node_df() # A graph can also be created by # specifying both the nodes and # edges; create an edge data frame # (edf) using the `create_edge_df()` # function: edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to", values = c(7.3, 2.6, 8.3)) # Create the graph object with # `create_graph()` and pass in the # ndf and edf objects graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get information on the graph's # internal edge data frame (edf) graph %>% get_edge_df() # Get information on the graph's # internal node data frame (ndf) graph %>% get_node_df()
# With `create_graph()` we can # simply create an empty graph (and # add in nodes and edges later # with other functions) graph <- create_graph() # A graph can be created with # nodes and without having any edges; # this can be done in 2 steps: # 1. create a node data frame (ndf) # using `create_node_df()` ndf <- create_node_df(n = 4) # 2. create a new graph object with # `create_graph()` and then pass # in the ndf to `nodes_df` graph <- create_graph( nodes_df = ndf) # Get information on the graph's nodes graph %>% get_node_info() # You can create a similar graph with # just nodes but also providing a # range of attributes for the nodes # (e.g., types, labels, or arbitrary # 'values') ndf <- create_node_df( n = 4, label = TRUE, type = c("type_1", "type_1", "type_5", "type_2"), shape = c("circle", "circle", "rectangle", "rectangle"), values = c(3.5, 2.6, 9.4, 2.7)) graph <- create_graph(nodes_df = ndf) # Get information on the graph's # internal node data frame (ndf) graph %>% get_node_df() # A graph can also be created by # specifying both the nodes and # edges; create an edge data frame # (edf) using the `create_edge_df()` # function: edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to", values = c(7.3, 2.6, 8.3)) # Create the graph object with # `create_graph()` and pass in the # ndf and edf objects graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get information on the graph's # internal edge data frame (edf) graph %>% get_edge_df() # Get information on the graph's # internal node data frame (ndf) graph %>% get_node_df()
Create a graph series object for the storage of multiple graphs across a sequential or temporal one-dimensional array.
create_graph_series( graph = NULL, series_name = NULL, series_type = "sequential" )
create_graph_series( graph = NULL, series_name = NULL, series_type = "sequential" )
graph |
A graph object to add to the new graph series object. |
series_name |
An optional name to ascribe to the series. |
series_type |
Either a |
A graph series object of type dgr_graph_1D
.
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Count the number of graphs # in the graph series series %>% count_graphs_in_graph_series()
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Count the number of graphs # in the graph series series %>% count_graphs_in_graph_series()
Combine several vectors for nodes and their attributes into a data frame, which can be combined with other similarly-generated data frames, or, added to a graph object. A node data frame, or ndf, has at least the following columns:
id
(of type integer
)
type
(of type character
)
label
(of type character
)
An arbitrary number of additional columns containing aesthetic or data
attributes can be part of the ndf, see node_aes()
for additional attributes that can be used with ..., so long as they follow the aforementioned
columns.
create_node_df(n, type = NULL, label = NULL, ...)
create_node_df(n, type = NULL, label = NULL, ...)
n |
The total number of nodes to include in the node data frame. |
type |
An optional |
label |
An optional |
... |
Additional attributes. Some are present in |
A node data frame (ndf).
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a node data frame (ndf) where the labels # are equivalent to the node ID values (this is not # recommended); the `label` and `type` node # attributes will always be a `character` class # whereas `id` will always be an `integer` node_df <- create_node_df( n = 4, type = c("a", "a", "b", "b"), label = TRUE) # Display the node data frame node_df # Create an ndf with distinct labels and # additional node attributes (where their classes # will be inferred from the input vectors) node_df <- create_node_df( n = 4, type = "a", label = c(2384, 3942, 8362, 2194), style = "filled", color = "aqua", shape = c("circle", "circle", "rectangle", "rectangle"), value = c(3.5, 2.6, 9.4, 2.7)) # Display the node data frame node_df
# Create a node data frame (ndf) where the labels # are equivalent to the node ID values (this is not # recommended); the `label` and `type` node # attributes will always be a `character` class # whereas `id` will always be an `integer` node_df <- create_node_df( n = 4, type = c("a", "a", "b", "b"), label = TRUE) # Display the node data frame node_df # Create an ndf with distinct labels and # additional node attributes (where their classes # will be inferred from the input vectors) node_df <- create_node_df( n = 4, type = "a", label = c(2384, 3942, 8362, 2194), style = "filled", color = "aqua", shape = c("circle", "circle", "rectangle", "rectangle"), value = c(3.5, 2.6, 9.4, 2.7)) # Display the node data frame node_df
A dataset containing currency information from the ISO-4217 standard.
currencies
currencies
A data frame with 171 rows and 4 variables:
the three-letter currency code according to the ISO-4217 standard
the three-digit code number assigned to each currency under the ISO-4217 standard
the base 10 exponent of the minor currency unit in relation to the major currency unit (it can be assumed also to be number of decimal places that is commonly considered for the currency)
the English name of the currency
https://en.wikipedia.org/wiki/ISO_4217
Delete vectors cached in a graph object of class dgr_graph
.
delete_cache(graph, name = NULL)
delete_cache(graph, name = NULL)
graph |
A graph object of class |
name |
One or more name of vector objects to delete from the cache. If none supplied, all cached vectors available in the graph will be deleted. |
A vector.
# Create an empty graph graph <- create_graph() # Cache 3 different vectors inside # the graph object graph <- graph %>% set_cache( name = "a", to_cache = 1:4) %>% set_cache( name = "b", to_cache = 5:9) %>% set_cache( name = "c", to_cache = 10:14) # Delete cache `b` graph <- graph %>% delete_cache(name = "b") # Delete remaining cached vectors graph <- graph %>% delete_cache()
# Create an empty graph graph <- create_graph() # Cache 3 different vectors inside # the graph object graph <- graph %>% set_cache( name = "a", to_cache = 1:4) %>% set_cache( name = "b", to_cache = 5:9) %>% set_cache( name = "c", to_cache = 10:14) # Delete cache `b` graph <- graph %>% delete_cache(name = "b") # Delete remaining cached vectors graph <- graph %>% delete_cache()
From a graph object of class dgr_graph
, delete an existing edge by
specifying either: (1) a pair of node IDs corresponding to the edge (keeping
into consideration the direction of the edge in a directed graph), or (2) an
edge ID.
delete_edge(graph, from = NULL, to = NULL, id = NULL)
delete_edge(graph, from = NULL, to = NULL, id = NULL)
graph |
A graph object of class |
from |
a node ID from which the edge to be removed is outgoing. If an
edge ID is provided to |
to |
a node ID to which the edge to be removed is incoming. If an edge
ID is provided to |
id |
an edge ID of the edge to be removed. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with 2 nodes graph <- create_graph() %>% add_n_nodes(n = 2) # Add an edge graph <- graph %>% add_edge( from = 1, to = 2) # Delete the edge graph <- graph %>% delete_edge( from = 1, to = 2) # Get the count of edges in the graph graph %>% count_edges() # Create an undirected graph with # 2 nodes and an edge graph_undirected <- create_graph(directed = FALSE) %>% add_n_nodes(n = 2) %>% add_edge( from = 1, to = 2) # Delete the edge; the order of node ID # values provided in `from` and `to` # don't matter for the undirected case graph_undirected %>% delete_edge( from = 2, to = 1) %>% count_edges() # The undirected graph has a single # edge with ID `1`; it can be # deleted by specifying `id` graph_undirected %>% delete_edge(id = 1) %>% count_edges() # Create a directed graph with 2 # labeled nodes and an edge graph_labeled_nodes <- create_graph() %>% add_n_nodes( n = 2, label = c("one", "two")) %>% add_edge( from = "one", to = "two") # Delete the edge using the node # labels in `from` and `to`; this # is analogous to creating the # edge using node labels graph_labeled_nodes %>% delete_edge( from = "one", to = "two") %>% count_edges()
# Create a graph with 2 nodes graph <- create_graph() %>% add_n_nodes(n = 2) # Add an edge graph <- graph %>% add_edge( from = 1, to = 2) # Delete the edge graph <- graph %>% delete_edge( from = 1, to = 2) # Get the count of edges in the graph graph %>% count_edges() # Create an undirected graph with # 2 nodes and an edge graph_undirected <- create_graph(directed = FALSE) %>% add_n_nodes(n = 2) %>% add_edge( from = 1, to = 2) # Delete the edge; the order of node ID # values provided in `from` and `to` # don't matter for the undirected case graph_undirected %>% delete_edge( from = 2, to = 1) %>% count_edges() # The undirected graph has a single # edge with ID `1`; it can be # deleted by specifying `id` graph_undirected %>% delete_edge(id = 1) %>% count_edges() # Create a directed graph with 2 # labeled nodes and an edge graph_labeled_nodes <- create_graph() %>% add_n_nodes( n = 2, label = c("one", "two")) %>% add_edge( from = "one", to = "two") # Delete the edge using the node # labels in `from` and `to`; this # is analogous to creating the # edge using node labels graph_labeled_nodes %>% delete_edge( from = "one", to = "two") %>% count_edges()
In a graph object of class dgr_graph
, delete all edges present in a
selection.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
delete_edges_ws(graph)
delete_edges_ws(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph graph <- create_graph() %>% add_n_nodes(n = 3) %>% add_edges_w_string( edges = "1->3 1->2 2->3") # Select edges attached to # node with ID `3` (these are # `1`->`3` and `2`->`3`) graph <- graph %>% select_edges_by_node_id(nodes = 3) # Delete edges in selection graph <- graph %>% delete_edges_ws() # Get a count of edges in the graph graph %>% count_edges()
# Create a graph graph <- create_graph() %>% add_n_nodes(n = 3) %>% add_edges_w_string( edges = "1->3 1->2 2->3") # Select edges attached to # node with ID `3` (these are # `1`->`3` and `2`->`3`) graph <- graph %>% select_edges_by_node_id(nodes = 3) # Delete edges in selection graph <- graph %>% delete_edges_ws() # Get a count of edges in the graph graph %>% count_edges()
Delete one of the global attributes stored within a graph object of class
dgr_graph
).
delete_global_graph_attrs(graph, attr = NULL, attr_type = NULL)
delete_global_graph_attrs(graph, attr = NULL, attr_type = NULL)
graph |
A graph object of class |
attr |
The name of the attribute to delete for the |
attr_type |
The specific type of global graph attribute to delete. The
type is specified with |
A graph object of class dgr_graph
.
# Create a new graph and add # some extra global graph attrs graph <- create_graph() %>% add_global_graph_attrs( attr = "overlap", value = "true", attr_type = "graph") %>% add_global_graph_attrs( attr = "penwidth", value = 3, attr_type = "node") %>% add_global_graph_attrs( attr = "penwidth", value = 3, attr_type = "edge") # Inspect the graph's global # attributes graph %>% get_global_graph_attr_info() # Delete the `penwidth` attribute # for the graph's nodes using the # `delete_global_graph_attrs()` fcn graph <- graph %>% delete_global_graph_attrs( attr = "penwidth", attr_type = "node") # View the remaining set of global # attributes for the graph graph %>% get_global_graph_attr_info()
# Create a new graph and add # some extra global graph attrs graph <- create_graph() %>% add_global_graph_attrs( attr = "overlap", value = "true", attr_type = "graph") %>% add_global_graph_attrs( attr = "penwidth", value = 3, attr_type = "node") %>% add_global_graph_attrs( attr = "penwidth", value = 3, attr_type = "edge") # Inspect the graph's global # attributes graph %>% get_global_graph_attr_info() # Delete the `penwidth` attribute # for the graph's nodes using the # `delete_global_graph_attrs()` fcn graph <- graph %>% delete_global_graph_attrs( attr = "penwidth", attr_type = "node") # View the remaining set of global # attributes for the graph graph %>% get_global_graph_attr_info()
Delete one or more graph actions stored within a graph object of class
dgr_graph
).
delete_graph_actions(graph, actions)
delete_graph_actions(graph, actions)
graph |
A graph object of class |
actions |
Either a vector of integer numbers indicating which actions to
delete (based on |
A graph object of class dgr_graph
.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) # Add three graph actions to the # graph graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_pagerank", column_name = "pagerank", action_name = "get_pagerank") %>% add_graph_action( fcn = "rescale_node_attrs", node_attr_from = "pagerank", node_attr_to = "width", action_name = "pagerank_to_width") %>% add_graph_action( fcn = "colorize_node_attrs", node_attr_from = "width", node_attr_to = "fillcolor", action_name = "pagerank_fillcolor") # View the graph actions for the graph # object by using the `get_graph_actions()` # function graph %>% get_graph_actions() # Delete the second and third graph # actions using `delete_graph_actions()` graph <- graph %>% delete_graph_actions( actions = c(2, 3)) # Verify that these last two graph # actions were deleted by again using # the `get_graph_actions()` function graph %>% get_graph_actions()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) # Add three graph actions to the # graph graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_pagerank", column_name = "pagerank", action_name = "get_pagerank") %>% add_graph_action( fcn = "rescale_node_attrs", node_attr_from = "pagerank", node_attr_to = "width", action_name = "pagerank_to_width") %>% add_graph_action( fcn = "colorize_node_attrs", node_attr_from = "width", node_attr_to = "fillcolor", action_name = "pagerank_fillcolor") # View the graph actions for the graph # object by using the `get_graph_actions()` # function graph %>% get_graph_actions() # Delete the second and third graph # actions using `delete_graph_actions()` graph <- graph %>% delete_graph_actions( actions = c(2, 3)) # Verify that these last two graph # actions were deleted by again using # the `get_graph_actions()` function graph %>% get_graph_actions()
With a selection of nodes in a graph, remove any associated loop edges.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
delete_loop_edges_ws(graph)
delete_loop_edges_ws(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create an undirected, full graph # of 5 nodes with loops retained graph <- create_graph( directed = FALSE) %>% add_full_graph( n = 5, keep_loops = TRUE) # Select nodes `3` and `4` # and remove the loop edges # associated with those nodes graph <- graph %>% select_nodes_by_id( nodes = 3:4) %>% delete_loop_edges_ws() # Count the number of loop # edges remaining in the graph graph %>% count_loop_edges()
# Create an undirected, full graph # of 5 nodes with loops retained graph <- create_graph( directed = FALSE) %>% add_full_graph( n = 5, keep_loops = TRUE) # Select nodes `3` and `4` # and remove the loop edges # associated with those nodes graph <- graph %>% select_nodes_by_id( nodes = 3:4) %>% delete_loop_edges_ws() # Count the number of loop # edges remaining in the graph graph %>% count_loop_edges()
From a graph object of class dgr_graph
, delete an existing node by
specifying its node ID.
delete_node(graph, node)
delete_node(graph, node)
graph |
A graph object of class |
node |
A node ID for the node to be deleted from the graph. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with 5 nodes and # edges between each in a path graph <- create_graph() %>% add_path(n = 5) # Delete node with ID `3` graph <- delete_node(graph, node = 3) # Verify that the node with ID `3` # is no longer in the graph graph %>% get_node_ids() # Also note that edges are removed # since there were edges between the # removed node to and from other nodes graph %>% get_edges()
# Create a graph with 5 nodes and # edges between each in a path graph <- create_graph() %>% add_path(n = 5) # Delete node with ID `3` graph <- delete_node(graph, node = 3) # Verify that the node with ID `3` # is no longer in the graph graph %>% get_node_ids() # Also note that edges are removed # since there were edges between the # removed node to and from other nodes graph %>% get_edges()
In a graph object of class dgr_graph
, delete all nodes present in a
selection of nodes.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
delete_nodes_ws(graph)
delete_nodes_ws(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with 3 nodes graph <- create_graph() %>% add_n_nodes(n = 3) %>% add_edges_w_string( edges = "1->3 1->2 2->3") # Select node with ID `1` graph <- graph %>% select_nodes_by_id(nodes = 1) # Delete node in selection (this # also deletes any attached edges) graph <- graph %>% delete_nodes_ws() # Get a count of nodes in the graph graph %>% count_nodes()
# Create a graph with 3 nodes graph <- create_graph() %>% add_n_nodes(n = 3) %>% add_edges_w_string( edges = "1->3 1->2 2->3") # Select node with ID `1` graph <- graph %>% select_nodes_by_id(nodes = 1) # Delete node in selection (this # also deletes any attached edges) graph <- graph %>% delete_nodes_ws() # Get a count of nodes in the graph graph %>% count_nodes()
Deselect edges in a graph object of class dgr_graph
.
deselect_edges(graph, edges)
deselect_edges(graph, edges)
graph |
A graph object of class |
edges |
A vector of edge IDs that should be deselected. |
A graph object of class dgr_graph
.
# Create a graph with # a single path graph <- create_graph() %>% add_path(n = 5) # Select edges with IDs `1` # and `3` graph <- graph %>% select_edges_by_edge_id( edges = c(1, 3)) # Verify that an edge selection # has been made graph %>% get_selection() # Deselect edge `1` graph <- graph %>% select_edges_by_edge_id( edges = c(1, 3)) %>% deselect_edges(edges = 1) # Verify that the edge selection # has been made for edges `1` and # `3` and that edge `1` has been # deselected (leaving only `3`) graph %>% get_selection()
# Create a graph with # a single path graph <- create_graph() %>% add_path(n = 5) # Select edges with IDs `1` # and `3` graph <- graph %>% select_edges_by_edge_id( edges = c(1, 3)) # Verify that an edge selection # has been made graph %>% get_selection() # Deselect edge `1` graph <- graph %>% select_edges_by_edge_id( edges = c(1, 3)) %>% deselect_edges(edges = 1) # Verify that the edge selection # has been made for edges `1` and # `3` and that edge `1` has been # deselected (leaving only `3`) graph %>% get_selection()
Deselect nodes in a graph object of class dgr_graph
.
deselect_nodes(graph, nodes)
deselect_nodes(graph, nodes)
graph |
A graph object of class |
nodes |
A vector of node IDs that should be deselected. |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = c("a", "a", "z", "z"), label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("a", "z", "a")) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select nodes `1` and `3` graph <- graph %>% select_nodes(nodes = c(1, 3)) %>% deselect_nodes(nodes = 1) # Verify that the node selection # has been made for nodes `1` and # `3` and that node `1` has been # deselected (leaving only `3`) graph %>% get_selection()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = c("a", "a", "z", "z"), label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("a", "z", "a")) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select nodes `1` and `3` graph <- graph %>% select_nodes(nodes = c(1, 3)) %>% deselect_nodes(nodes = 1) # Verify that the node selection # has been made for nodes `1` and # `3` and that node `1` has been # deselected (leaving only `3`) graph %>% get_selection()
Make diagrams in R using viz.js or mermaid.js with infrastructure provided by htmlwidgets.
DiagrammeR(diagram = "", type = "mermaid", ...)
DiagrammeR(diagram = "", type = "mermaid", ...)
diagram |
The diagram in |
type |
A string, either |
... |
Any other parameters to pass to |
An object of class htmlwidget
that will intelligently print itself
into HTML in a variety of contexts including the R console, within R
Markdown documents, and within Shiny output bindings.
## Not run: # note the whitespace is not important DiagrammeR(" graph LR A-->B A-->C C-->E B-->D C-->D D-->F E-->F ") DiagrammeR(" graph TB A-->B A-->C C-->E B-->D C-->D D-->F E-->F ") DiagrammeR("graph LR;A(Rounded)-->B[Squared];B-->C{A Decision}; C-->D[Square One];C-->E[Square Two]; style A fill:#E5E25F; style B fill:#87AB51; style C fill:#3C8937; style D fill:#23772C; style E fill:#B6E6E6;" ) # Load in the 'mtcars' dataset mtcars connections <- sapply( 1:ncol(mtcars) ,function(i) { paste0( i ,"(",colnames(mtcars)[i],")---" ,i,"-stats(" ,paste0( names(summary(mtcars[,i])) ,": " ,unname(summary(mtcars[,i])) ,collapse="<br/>" ) ,")" ) } ) DiagrammeR( paste0( "graph TD;", "\n", paste(connections, collapse = "\n"),"\n", "classDef column fill:#0001CC, stroke:#0D3FF3, stroke-width:1px;" ,"\n", "class ", paste0(1:length(connections), collapse = ","), " column;" ) ) # also with DiagrammeR() you can use tags from htmltools # just make sure to use class = "mermaid" library(htmltools) diagramSpec = " graph LR; id1(Start)-->id2(Stop); style id1 fill:#f9f,stroke:#333,stroke-width:4px; style id2 fill:#ccf,stroke:#f66,stroke-width:2px,stroke-dasharray: 5, 5; " html_print(tagList( tags$h1("R + mermaid.js = Something Special") ,tags$pre(diagramSpec) ,tags$div(class="mermaid",diagramSpec) ,DiagrammeR() )) # sequence diagrams # Using this "How to Draw a Sequence Diagram" # http://www.cs.uku.fi/research/publications/reports/A-2003-1/page91.pdf # draw some sequence diagrams with DiagrammeR DiagrammeR(" sequenceDiagram; customer->>ticket seller: ask for ticket; ticket seller->>database: seats; alt tickets available database->>ticket seller: ok; ticket seller->>customer: confirm; customer->>ticket seller: ok; ticket seller->>database: book a seat; ticket seller->>printer: print ticket; else sold out database->>ticket seller: none left; ticket seller->>customer: sorry; end ") ## End(Not run)
## Not run: # note the whitespace is not important DiagrammeR(" graph LR A-->B A-->C C-->E B-->D C-->D D-->F E-->F ") DiagrammeR(" graph TB A-->B A-->C C-->E B-->D C-->D D-->F E-->F ") DiagrammeR("graph LR;A(Rounded)-->B[Squared];B-->C{A Decision}; C-->D[Square One];C-->E[Square Two]; style A fill:#E5E25F; style B fill:#87AB51; style C fill:#3C8937; style D fill:#23772C; style E fill:#B6E6E6;" ) # Load in the 'mtcars' dataset mtcars connections <- sapply( 1:ncol(mtcars) ,function(i) { paste0( i ,"(",colnames(mtcars)[i],")---" ,i,"-stats(" ,paste0( names(summary(mtcars[,i])) ,": " ,unname(summary(mtcars[,i])) ,collapse="<br/>" ) ,")" ) } ) DiagrammeR( paste0( "graph TD;", "\n", paste(connections, collapse = "\n"),"\n", "classDef column fill:#0001CC, stroke:#0D3FF3, stroke-width:1px;" ,"\n", "class ", paste0(1:length(connections), collapse = ","), " column;" ) ) # also with DiagrammeR() you can use tags from htmltools # just make sure to use class = "mermaid" library(htmltools) diagramSpec = " graph LR; id1(Start)-->id2(Stop); style id1 fill:#f9f,stroke:#333,stroke-width:4px; style id2 fill:#ccf,stroke:#f66,stroke-width:2px,stroke-dasharray: 5, 5; " html_print(tagList( tags$h1("R + mermaid.js = Something Special") ,tags$pre(diagramSpec) ,tags$div(class="mermaid",diagramSpec) ,DiagrammeR() )) # sequence diagrams # Using this "How to Draw a Sequence Diagram" # http://www.cs.uku.fi/research/publications/reports/A-2003-1/page91.pdf # draw some sequence diagrams with DiagrammeR DiagrammeR(" sequenceDiagram; customer->>ticket seller: ask for ticket; ticket seller->>database: seats; alt tickets available database->>ticket seller: ok; ticket seller->>customer: confirm; customer->>ticket seller: ok; ticket seller->>database: book a seat; ticket seller->>printer: print ticket; else sold out database->>ticket seller: none left; ticket seller->>customer: sorry; end ") ## End(Not run)
Widget output function for use in Shiny
DiagrammeROutput(outputId, width = "100%", height = "auto")
DiagrammeROutput(outputId, width = "100%", height = "auto")
outputId |
Output variable to read from |
width |
A valid CSS unit for the width or a number, which will be
coerced to a string and have |
height |
A valid CSS unit for the height or a number, which will be
coerced to a string and have |
With a graph object of class dgr_graph
that is also a property graph (i.e.,
all nodes have an assigned type
value and all edges have an assigned rel
value), display its metagraph in the RStudio Viewer. This representation
provides all combinations of edges of different rel
values to all nodes
with distinct type
values, including any edges to nodes of the same type
(shown as loops). The precondition of the graph being a property graph can be
verified by using the is_property_graph()
function.
display_metagraph(graph)
display_metagraph(graph)
graph |
A graph object of class |
# Create a randomized property # graph with 1000 nodes and 1350 edges property_graph <- create_graph() %>% add_gnm_graph( n = 1000, m = 1350, set_seed = 23) %>% select_nodes_by_degree( expressions = "deg >= 3") %>% set_node_attrs_ws( node_attr = type, value = "a") %>% clear_selection() %>% select_nodes_by_degree( expressions = "deg < 3") %>% set_node_attrs_ws( node_attr = type, value = "b") %>% clear_selection() %>% select_nodes_by_degree( expressions = "deg == 0") %>% set_node_attrs_ws( node_attr = type, value = "c") %>% set_node_attr_to_display( attr = type) %>% select_edges_by_node_id( nodes = get_node_ids(.) %>% sample( size = 0.15 * length(.) %>% floor())) %>% set_edge_attrs_ws( edge_attr = rel, value = "r_1") %>% invert_selection() %>% set_edge_attrs_ws( edge_attr = rel, value = "r_2") %>% clear_selection() %>% copy_edge_attrs( edge_attr_from = rel, edge_attr_to = label) %>% add_global_graph_attrs( attr = "fontname", value = "Helvetica", attr_type = "edge") %>% add_global_graph_attrs( attr = "fontcolor", value = "gray50", attr_type = "edge") %>% add_global_graph_attrs( attr = "fontsize", value = 10, attr_type = "edge") # Display this graph's # metagraph, or, the underlying # graph model for a property graph # display_metagraph(property_graph)
# Create a randomized property # graph with 1000 nodes and 1350 edges property_graph <- create_graph() %>% add_gnm_graph( n = 1000, m = 1350, set_seed = 23) %>% select_nodes_by_degree( expressions = "deg >= 3") %>% set_node_attrs_ws( node_attr = type, value = "a") %>% clear_selection() %>% select_nodes_by_degree( expressions = "deg < 3") %>% set_node_attrs_ws( node_attr = type, value = "b") %>% clear_selection() %>% select_nodes_by_degree( expressions = "deg == 0") %>% set_node_attrs_ws( node_attr = type, value = "c") %>% set_node_attr_to_display( attr = type) %>% select_edges_by_node_id( nodes = get_node_ids(.) %>% sample( size = 0.15 * length(.) %>% floor())) %>% set_edge_attrs_ws( edge_attr = rel, value = "r_1") %>% invert_selection() %>% set_edge_attrs_ws( edge_attr = rel, value = "r_2") %>% clear_selection() %>% copy_edge_attrs( edge_attr_from = rel, edge_attr_to = label) %>% add_global_graph_attrs( attr = "fontname", value = "Helvetica", attr_type = "edge") %>% add_global_graph_attrs( attr = "fontcolor", value = "gray50", attr_type = "edge") %>% add_global_graph_attrs( attr = "fontsize", value = 10, attr_type = "edge") # Display this graph's # metagraph, or, the underlying # graph model for a property graph # display_metagraph(property_graph)
With a chosen or random node serving as the starting point, perform a breadth-first search of the whole graph and return the node ID values visited. The bfs algorithm differs from depth-first search (dfs) in that bfs will follow tree branches branches one level at a time until terminating at leaf node (dfs traverses branches as far as possible).
do_bfs(graph, node = NULL, direction = "all")
do_bfs(graph, node = NULL, direction = "all")
graph |
A graph object of class |
node |
An optional node ID value to specify a single starting point for the bfs. If not provided, a random node from the graph will be chosen. |
direction |
Using |
A vector containing node ID values for nodes visited during the breadth-first search. The order of the node IDs corresponds to the order visited.
# Create a graph containing # two balanced trees graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) %>% add_balanced_tree( k = 3, h = 2) # Perform a breadth-first # search of the graph, # beginning at the root node # `1` (the default # `direction = "all"` doesn't # take edge direction into # account) graph %>% do_bfs(node = 1) # If not specifying a # starting node, the function # will begin the search from # a random node graph %>% do_bfs() # It's also possible to # perform bfs while taking # into account edge direction; # using `direction = "in"` # causes the bfs routine to # visit nodes along inward edges graph %>% do_bfs( node = 1, direction = "in") # Using `direction = "out"` # results in the bfs moving # along solely outward edges graph %>% do_bfs( node = 1, direction = "out")
# Create a graph containing # two balanced trees graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) %>% add_balanced_tree( k = 3, h = 2) # Perform a breadth-first # search of the graph, # beginning at the root node # `1` (the default # `direction = "all"` doesn't # take edge direction into # account) graph %>% do_bfs(node = 1) # If not specifying a # starting node, the function # will begin the search from # a random node graph %>% do_bfs() # It's also possible to # perform bfs while taking # into account edge direction; # using `direction = "in"` # causes the bfs routine to # visit nodes along inward edges graph %>% do_bfs( node = 1, direction = "in") # Using `direction = "out"` # results in the bfs moving # along solely outward edges graph %>% do_bfs( node = 1, direction = "out")
With a chosen or random node serving as the starting point, perform a depth-first search of the whole graph and return the node ID values visited. The dfs algorithm differs from breadth-first search (bfs) in that dfs will follow tree branches as far as possible until terminating at leaf node (bfs traverses branches one level at a time).
do_dfs(graph, node = NULL, direction = "all")
do_dfs(graph, node = NULL, direction = "all")
graph |
A graph object of class |
node |
An optional node ID value to specify a single starting point for the dfs. If not provided, a random node from the graph will be chosen. |
direction |
Using |
A vector containing node ID values for nodes visited during the depth-first search. The order of the node IDs corresponds to the order visited.
# Create a graph containing # two balanced trees graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) %>% add_balanced_tree( k = 3, h = 2) # Perform a depth-first # search of the graph, # beginning at the root # node `1` (the default # `direction = "all"` # doesn't take edge # direction into account) graph %>% do_dfs(node = 1) # If not specifying a # starting node, the function # will begin the search # from a random node graph %>% do_dfs() # It's also possible to # perform dfs while taking # into account edge direction; # using `direction = "in"` # causes the dfs routine to # visit nodes along inward edges graph %>% do_dfs( node = 1, direction = "in") # Using `direction = "out"` # results in the dfs moving # along solely outward edges graph %>% do_dfs( node = 1, direction = "out")
# Create a graph containing # two balanced trees graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) %>% add_balanced_tree( k = 3, h = 2) # Perform a depth-first # search of the graph, # beginning at the root # node `1` (the default # `direction = "all"` # doesn't take edge # direction into account) graph %>% do_dfs(node = 1) # If not specifying a # starting node, the function # will begin the search # from a random node graph %>% do_dfs() # It's also possible to # perform dfs while taking # into account edge direction; # using `direction = "in"` # causes the dfs routine to # visit nodes along inward edges graph %>% do_dfs( node = 1, direction = "in") # Using `direction = "out"` # results in the dfs moving # along solely outward edges graph %>% do_dfs( node = 1, direction = "out")
Within a graph's internal edge data frame (edf), remove an existing edge attribute.
drop_edge_attrs(graph, edge_attr)
drop_edge_attrs(graph, edge_attr)
graph |
A graph object of class |
edge_attr |
The name of the edge attribute column to drop. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 6, set_seed = 23) %>% set_edge_attrs( edge_attr = value, values = 3) %>% mutate_edge_attrs( penwidth = value * 2) # Get the graph's internal # edf to show which edge # attributes are available graph %>% get_edge_df() # Drop the `value` edge # attribute graph <- graph %>% drop_edge_attrs( edge_attr = value) # Get the graph's internal # edf to show that the edge # attribute `value` had been # removed graph %>% get_edge_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 6, set_seed = 23) %>% set_edge_attrs( edge_attr = value, values = 3) %>% mutate_edge_attrs( penwidth = value * 2) # Get the graph's internal # edf to show which edge # attributes are available graph %>% get_edge_df() # Drop the `value` edge # attribute graph <- graph %>% drop_edge_attrs( edge_attr = value) # Get the graph's internal # edf to show that the edge # attribute `value` had been # removed graph %>% get_edge_df()
Within a graph's internal node data frame (ndf), remove an existing node attribute.
drop_node_attrs(graph, node_attr)
drop_node_attrs(graph, node_attr)
graph |
A graph object of class |
node_attr |
The name of the node attribute column to drop. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal # ndf to show which node # attributes are available graph %>% get_node_df() # Drop the `value` node # attribute graph <- graph %>% drop_node_attrs( node_attr = value) # Get the graph's internal # ndf to show that the node # attribute `value` had been # removed graph %>% get_node_df()
graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal # ndf to show which node # attributes are available graph %>% get_node_df() # Drop the `value` node # attribute graph <- graph %>% drop_node_attrs( node_attr = value) # Get the graph's internal # ndf to show that the node # attribute `value` had been # removed graph %>% get_node_df()
This helper function should be invoked to provide values for the namesake
edge_aes
argument, which is present in any function where edges are
created.
edge_aes( style = NULL, penwidth = NULL, color = NULL, arrowsize = NULL, arrowhead = NULL, arrowtail = NULL, fontname = NULL, fontsize = NULL, fontcolor = NULL, len = NULL, tooltip = NULL, URL = NULL, label = NULL, labelfontname = NULL, labelfontsize = NULL, labelfontcolor = NULL, labeltooltip = NULL, labelURL = NULL, edgetooltip = NULL, edgeURL = NULL, dir = NULL, headtooltip = NULL, headURL = NULL, headclip = NULL, headlabel = NULL, headport = NULL, tailtooltip = NULL, tailURL = NULL, tailclip = NULL, taillabel = NULL, tailport = NULL, decorate = NULL )
edge_aes( style = NULL, penwidth = NULL, color = NULL, arrowsize = NULL, arrowhead = NULL, arrowtail = NULL, fontname = NULL, fontsize = NULL, fontcolor = NULL, len = NULL, tooltip = NULL, URL = NULL, label = NULL, labelfontname = NULL, labelfontsize = NULL, labelfontcolor = NULL, labeltooltip = NULL, labelURL = NULL, edgetooltip = NULL, edgeURL = NULL, dir = NULL, headtooltip = NULL, headURL = NULL, headclip = NULL, headlabel = NULL, headport = NULL, tailtooltip = NULL, tailURL = NULL, tailclip = NULL, taillabel = NULL, tailport = NULL, decorate = NULL )
style |
The edge line style. The |
penwidth |
The thickness of the stroke line for the edge itself. |
color |
The color of the edge. Can be an X11 color or a hexadecimal color code. |
arrowsize |
A scaling factor for arrowheads. The default value is |
arrowhead |
The type of arrowhead to use. The |
arrowtail |
The type of arrowtail to use. The |
fontname |
The name of the system font that will be used for any edge text. |
fontsize |
The point size of the font used for any edge text. |
fontcolor |
The color used for any edge text. Can be an X11 color or a hexadecimal color code. |
len |
The preferred edge length for an edge, in inches. Default value is
|
tooltip |
Text for a tooltip that appears when hovering over an edge. If
text is not provided, then the default tooltip text will provide the edge
definition (i.e., |
URL |
A URL to associate with an edge. Upon rendering the plot, clicking edges with any associated URLs will open the URL in the default browser. |
label |
The label text associated with the edge. This text will appear near the center of the edge. |
labelfontname |
The name of the system font that will be used for the
|
labelfontsize |
The point size of the font used for the |
labelfontcolor |
The color used for the label text of the |
labeltooltip |
Text for a tooltip that will appear when hovering over
the main label of an edge (if label text provided in the |
labelURL |
A URL to associate with edge label text. Upon rendering the plot, clicking edge labels with any associated URLs will open the URL in the default browser. |
edgetooltip |
This option provides a means to specify a tooltip with
only the non-label parts of an edge. If this is defined, the value
overrides any |
edgeURL |
This option provides a means to specify a URL with only the
non-label parts of an edge. If this is defined, the value overrides any
|
dir |
An optional direction type. Normally, for directed graphs, this is
|
headtooltip |
This option provides a means to specify a tooltip that can
be displayed by hovering over the part of an edge that is adjacent to
incoming node (see the |
headURL |
This option provides a means to specify a URL that can be
accessed by clicking the part of an edge that is adjacent to incoming node
(see the |
headclip |
If |
headlabel |
This option provides a means to display a label near the
part of an edge that is adjacent to incoming node (see the |
headport |
Allows one to specify which compass position on the incoming
node the head of the edge will alight. Options are |
tailtooltip |
This option provides a means to specify a tooltip that can
be displayed by hovering over the part of an edge that is adjacent to
outgoing node (see the |
tailURL |
This option provides a means to specify a URL that can be
accessed by clicking the part of an edge that is adjacent to outgoing node
(see the |
tailclip |
If |
taillabel |
This option provides a means to display a label near the
part of an edge that is adjacent to outgoing node (see the |
tailport |
Allows one to specify which compass position on the outgoing
node the tail of the edge will be emitted from. Options are |
decorate |
If |
Other aesthetics:
node_aes()
,
node_edge_aes_data
# Create a new graph and add # a path with several edge # aesthetic attributes graph <- create_graph() %>% add_path( n = 3, type = "path", edge_aes = edge_aes( style = "dot", color = c("red", "blue"))) # View the graph's internal # node data frame; the node # aesthetic attributes have # been inserted graph %>% get_edge_df()
# Create a new graph and add # a path with several edge # aesthetic attributes graph <- create_graph() %>% add_path( n = 3, type = "path", edge_aes = edge_aes( style = "dot", color = c("red", "blue"))) # View the graph's internal # node data frame; the node # aesthetic attributes have # been inserted graph %>% get_edge_df()
This helper function should be invoked to provide values for the namesake
edge_data
argument, which is present in any function where edges are
created.
edge_data(...)
edge_data(...)
... |
Edge data attributes provided as one or more named vectors. |
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
## Not run: # Create a new graph and add # a path with several edge # data attributes graph <- create_graph() %>% add_path( n = 3, type = "path", edge_data = edge_data( hour = 5, index = c(1, 2))) # View the graph's internal # edge data frame; the edge # data attributes have # been inserted graph %>% get_edge_df() ## End(Not run)
## Not run: # Create a new graph and add # a path with several edge # data attributes graph <- create_graph() %>% add_path( n = 3, type = "path", edge_data = edge_data( hour = 5, index = c(1, 2))) # View the graph's internal # edge data frame; the edge # data attributes have # been inserted graph %>% get_edge_df() ## End(Not run)
A very simple, 2-column data frame that can be used to generate graph edges.
edge_list_1
edge_list_1
A data frame with 19 rows and 2 variables:
integer values that state the node ID values where an edge starts
integer values that state the node ID values where an edge terminates
A simple, 5-column data frame that can be used to generate graph edges.
edge_list_2
edge_list_2
A data frame with 19 rows and 5 variables:
integer values that state the node ID values where an edge starts
integer values that state the node ID values where an edge terminates
a grouping variable of either a, b, or c
a randomized set of numeric values between 0 and 10
a randomized set of numeric values between 0 and 10
Export a graph to separate CSV files for nodes and edges.
export_csv( graph, ndf_name = "nodes.csv", edf_name = "edges.csv", output_path = getwd(), colnames_type = NULL )
export_csv( graph, ndf_name = "nodes.csv", edf_name = "edges.csv", output_path = getwd(), colnames_type = NULL )
graph |
A graph object of class |
ndf_name |
The name to provide to the CSV file containing node
information. By default this CSV will be called |
edf_name |
The name to provide to the CSV file containing edge
information. By default this CSV will be called |
output_path |
The path to which the CSV files will be placed. By default, this is the current working directory. |
colnames_type |
Provides options to modify CSV column names to allow for
easier import into other graph systems. The |
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = c("a", "a", "z", "z"), label = TRUE, value = c(3.5, 2.6, 9.4, 2.7) ) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("rel_a", "rel_z", "rel_a") ) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf ) # Create separate `nodes.csv` and # `edges.csv` files # graph %>% export_csv()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = c("a", "a", "z", "z"), label = TRUE, value = c(3.5, 2.6, 9.4, 2.7) ) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("rel_a", "rel_z", "rel_a") ) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf ) # Create separate `nodes.csv` and # `edges.csv` files # graph %>% export_csv()
Export a graph to a variety of image formats such as PNG, PDF, SVG, and PostScript.
export_graph( graph, file_name = NULL, file_type = NULL, title = NULL, width = NULL, height = NULL )
export_graph( graph, file_name = NULL, file_type = NULL, title = NULL, width = NULL, height = NULL )
graph |
A graph object of class |
file_name |
The name of the exported file (including it's extension). |
file_type |
The type of file to be exported. Options for graph files
are: |
title |
An optional title for the output graph. |
width |
Output width in pixels or |
height |
Output height in pixels or |
Other Display and Save:
render_graph()
,
render_graph_from_graph_series()
,
save_graph()
# Create a simple graph graph <- create_graph() %>% add_path( n = 5, edge_aes = edge_aes( arrowhead = c( "normal", "vee", "tee", "dot" ), color = c( "red", "blue", "orange", "purple" ) ) ) # Create a PDF file for # the graph (`graph.pdf`) # graph %>% # export_graph( # file_name = "graph.pdf", # title = "Simple Graph" # ) # Create a PNG file for # the graph (`mypng.png`) # graph %>% # export_graph( # file_name = "mypng.png", # file_type = "PNG" # )
# Create a simple graph graph <- create_graph() %>% add_path( n = 5, edge_aes = edge_aes( arrowhead = c( "normal", "vee", "tee", "dot" ), color = c( "red", "blue", "orange", "purple" ) ) ) # Create a PDF file for # the graph (`graph.pdf`) # graph %>% # export_graph( # file_name = "graph.pdf", # title = "Simple Graph" # ) # Create a PNG file for # the graph (`mypng.png`) # graph %>% # export_graph( # file_name = "mypng.png", # file_type = "PNG" # )
Subsetting a graph series by the graphs' index positions in the graph series or through selection via graphs' date-time attributes.
filter_graph_series(graph_series, by = "number", values, tz = NULL)
filter_graph_series(graph_series, by = "number", values, tz = NULL)
graph_series |
A graph series object of type |
by |
Either |
values |
Where the subsetting of the graph series by to occur via graph
indices (where |
tz |
The time zone ( |
A graph series object of type dgr_graph_1D
.
# Create three graphs graph_time_1 <- create_graph( graph_name = "graph_with_time_1") %>% set_graph_time( time = "2015-03-25 03:00", tz = "GMT") graph_time_2 <- create_graph( graph_name = "graph_with_time_2") %>% set_graph_time( time = "2015-03-26 03:00", tz = "GMT") graph_time_3 <- create_graph( graph_name = "graph_with_time_3") %>% set_graph_time( time = "2015-03-27 15:00", tz = "GMT") # Create an empty graph series and add # the graphs series_temporal <- create_graph_series( series_type = "temporal") %>% add_graph_to_graph_series( graph = graph_time_1) %>% add_graph_to_graph_series( graph = graph_time_2) %>% add_graph_to_graph_series( graph = graph_time_3) # Subset graph series by sequence series_sequence_subset <- filter_graph_series( graph_series = series_temporal, by = "number", values = 2) # Get a count of graphs in # the series series_sequence_subset %>% count_graphs_in_graph_series() # Subset graph series by date-time series_time_subset <- filter_graph_series( graph_series = series_temporal, by = "time", values = c("2015-03-25 12:00", "2015-03-26 12:00"), tz = "GMT") # Get a count of graphs in # the series series_time_subset %>% count_graphs_in_graph_series()
# Create three graphs graph_time_1 <- create_graph( graph_name = "graph_with_time_1") %>% set_graph_time( time = "2015-03-25 03:00", tz = "GMT") graph_time_2 <- create_graph( graph_name = "graph_with_time_2") %>% set_graph_time( time = "2015-03-26 03:00", tz = "GMT") graph_time_3 <- create_graph( graph_name = "graph_with_time_3") %>% set_graph_time( time = "2015-03-27 15:00", tz = "GMT") # Create an empty graph series and add # the graphs series_temporal <- create_graph_series( series_type = "temporal") %>% add_graph_to_graph_series( graph = graph_time_1) %>% add_graph_to_graph_series( graph = graph_time_2) %>% add_graph_to_graph_series( graph = graph_time_3) # Subset graph series by sequence series_sequence_subset <- filter_graph_series( graph_series = series_temporal, by = "number", values = 2) # Get a count of graphs in # the series series_sequence_subset %>% count_graphs_in_graph_series() # Subset graph series by date-time series_time_subset <- filter_graph_series( graph_series = series_temporal, by = "time", values = c("2015-03-25 12:00", "2015-03-26 12:00"), tz = "GMT") # Get a count of graphs in # the series series_time_subset %>% count_graphs_in_graph_series()
Using an adjacency matrix object, generate a graph of class dgr_graph
.
from_adj_matrix( x, mode = "undirected", weighted = FALSE, use_diag = TRUE, graph_name = NULL, write_backups = FALSE, display_msgs = FALSE )
from_adj_matrix( x, mode = "undirected", weighted = FALSE, use_diag = TRUE, graph_name = NULL, write_backups = FALSE, display_msgs = FALSE )
x |
A square |
mode |
The method in which to interpret the input adjacency matrix.
Options include: |
weighted |
Whether to create a weighted graph from the adjacency matrix. |
use_diag |
Whether to use the diagonal of the adjacency matrix in
calculations. If |
graph_name |
An optional string for labeling the graph object. |
write_backups |
An option to write incremental backups of changing graph
states to disk. If |
display_msgs |
An option to display messages primarily concerned with
changes in graph selections. By default, this is |
A graph object of class dgr_graph
.
# Create an adjacency matrix adj_matrix <- sample( 0:1, 100, replace = TRUE, prob = c(0.9,0.1) ) %>% matrix(ncol = 10) # Create a graph from the adjacency matrix graph <- from_adj_matrix(adj_matrix)
# Create an adjacency matrix adj_matrix <- sample( 0:1, 100, replace = TRUE, prob = c(0.9,0.1) ) %>% matrix(ncol = 10) # Create a graph from the adjacency matrix graph <- from_adj_matrix(adj_matrix)
Convert an igraph graph to a DiagrammeR graph object.
from_igraph( igraph, graph_name = NULL, write_backups = FALSE, display_msgs = FALSE )
from_igraph( igraph, graph_name = NULL, write_backups = FALSE, display_msgs = FALSE )
igraph |
An igraph graph object. |
graph_name |
An optional string for labeling the graph object. |
write_backups |
An option to write incremental backups of changing graph
states to disk. If |
display_msgs |
An option to display messages primarily concerned with
changes in graph selections. By default, this is |
A graph object of class dgr_graph
.
# Create a DiagrammeR graph object dgr_graph_orig <- create_graph() %>% add_gnm_graph( n = 36, m = 50, set_seed = 23) # Convert the DiagrammeR # graph to an igraph object ig_graph <- dgr_graph_orig %>% to_igraph() # Convert the igraph graph # back to a DiagrammeR graph dgr_graph_new <- ig_graph %>% from_igraph() # Get some graph information (dgr_graph_new %>% get_graph_info())[, 1:6]
# Create a DiagrammeR graph object dgr_graph_orig <- create_graph() %>% add_gnm_graph( n = 36, m = 50, set_seed = 23) # Convert the DiagrammeR # graph to an igraph object ig_graph <- dgr_graph_orig %>% to_igraph() # Convert the igraph graph # back to a DiagrammeR graph dgr_graph_new <- ig_graph %>% from_igraph() # Get some graph information (dgr_graph_new %>% get_graph_info())[, 1:6]
With a selection of nodes in a graph, add any remaining edges required to fully connect this group of edges to each other.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
fully_connect_nodes_ws(graph)
fully_connect_nodes_ws(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create an empty graph and # then add a path of 3 nodes # and two isolated nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 2) # Select a node in the path # of nodes (node `3`) and # the two isolated nodes (`4` # and `5`); then, and fully # connect these nodes together graph <- graph %>% select_nodes_by_id( nodes = 3:5) %>% fully_connect_nodes_ws() # Get the graph's edge data frame graph %>% get_edge_df() # Create an undirected, empty # graph; add a path of 3 nodes # and two isolated nodes graph <- create_graph( directed = FALSE) %>% add_path(n = 3) %>% add_n_nodes(n = 2) # Select a node in the path # of nodes (node `3`) and # the two isolated nodes (`4` # and `5`); then, and fully # connect these nodes together graph <- graph %>% select_nodes_by_id( nodes = 3:5) %>% fully_connect_nodes_ws() # Get the graph's edge data # frame; in the undirected # case, reverse edges aren't # added graph %>% get_edge_df()
# Create an empty graph and # then add a path of 3 nodes # and two isolated nodes graph <- create_graph() %>% add_path(n = 3) %>% add_n_nodes(n = 2) # Select a node in the path # of nodes (node `3`) and # the two isolated nodes (`4` # and `5`); then, and fully # connect these nodes together graph <- graph %>% select_nodes_by_id( nodes = 3:5) %>% fully_connect_nodes_ws() # Get the graph's edge data frame graph %>% get_edge_df() # Create an undirected, empty # graph; add a path of 3 nodes # and two isolated nodes graph <- create_graph( directed = FALSE) %>% add_path(n = 3) %>% add_n_nodes(n = 2) # Select a node in the path # of nodes (node `3`) and # the two isolated nodes (`4` # and `5`); then, and fully # connect these nodes together graph <- graph %>% select_nodes_by_id( nodes = 3:5) %>% fully_connect_nodes_ws() # Get the graph's edge data # frame; in the undirected # case, reverse edges aren't # added graph %>% get_edge_df()
With a selection of nodes in a graph, remove any edges to or from those nodes.
fully_disconnect_nodes_ws(graph)
fully_disconnect_nodes_ws(graph)
graph |
A graph object of class |
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
A graph object of class dgr_graph
.
# Create an empty graph and # add a path of 6 nodes graph <- create_graph() %>% add_path(n = 6) # Select nodes `3` and `4` # and fully disconnect them # from the graph graph <- graph %>% select_nodes_by_id( nodes = 3:4) %>% fully_disconnect_nodes_ws() # Get the graph's edge data frame graph %>% get_edge_df()
# Create an empty graph and # add a path of 6 nodes graph <- create_graph() %>% add_path(n = 6) # Select nodes `3` and `4` # and fully disconnect them # from the graph graph <- graph %>% select_nodes_by_id( nodes = 3:4) %>% fully_disconnect_nodes_ws() # Get the graph's edge data frame graph %>% get_edge_df()
Generates Graphviz DOT code as an R character object using DiagrammeR graph object.
generate_dot(graph)
generate_dot(graph)
graph |
A graph object of class |
A character vector of length 1 containing Graphviz DOT code.
Get the adhesion of a graph, which is the minimum number of edges needed to remove to obtain a graph which is not strongly connected. This is the same as the edge connectivity of the graph.
get_adhesion(graph)
get_adhesion(graph)
graph |
A graph object of class |
A single numeric value representing the minimum number of edges to remove.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's adhesion graph %>% get_adhesion() # Create a full graph and then # get the adhesion for that create_graph() %>% add_full_graph(n = 8) %>% get_adhesion()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's adhesion graph %>% get_adhesion() # Create a full graph and then # get the adhesion for that create_graph() %>% add_full_graph(n = 8) %>% get_adhesion()
Get a single, aggregate value from the indegree values for all nodes in a graph, or, a subset of graph nodes.
get_agg_degree_in(graph, agg, conditions = NULL)
get_agg_degree_in(graph, agg, conditions = NULL)
graph |
A graph object of class |
agg |
The aggregation function to use for summarizing indegree values
from graph nodes. The following aggregation functions can be used: |
conditions |
An option to use filtering conditions for the nodes to consider. |
A vector with an aggregate indegree value.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 20, m = 35, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the mean indegree value # from all nodes in the graph graph %>% get_agg_degree_in( agg = "mean") # Other aggregation functions # can be used (`min`, `max`, # `median`, `sum`); let's get # the median in this example graph %>% get_agg_degree_in( agg = "median") # The aggregation of indegree # can occur for a subset of the # graph nodes and this is made # possible by specifying # `conditions` for the nodes graph %>% get_agg_degree_in( agg = "mean", conditions = value > 5.0)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 20, m = 35, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the mean indegree value # from all nodes in the graph graph %>% get_agg_degree_in( agg = "mean") # Other aggregation functions # can be used (`min`, `max`, # `median`, `sum`); let's get # the median in this example graph %>% get_agg_degree_in( agg = "median") # The aggregation of indegree # can occur for a subset of the # graph nodes and this is made # possible by specifying # `conditions` for the nodes graph %>% get_agg_degree_in( agg = "mean", conditions = value > 5.0)
Get a single, aggregate value from the outdegree values for all nodes in a graph, or, a subset of graph nodes.
get_agg_degree_out(graph, agg, conditions = NULL)
get_agg_degree_out(graph, agg, conditions = NULL)
graph |
A graph object of class |
agg |
The aggregation function to use for summarizing outdegree values
from graph nodes. The following aggregation functions can be used: |
conditions |
An option to use filtering conditions for the nodes to consider. |
A vector with an aggregate outdegree value.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 20, m = 35, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the mean outdegree value from all # nodes in the graph graph %>% get_agg_degree_out( agg = "mean") # Other aggregation functions can be used # (`min`, `max`, `median`, `sum`); let's # get the median in this example graph %>% get_agg_degree_out( agg = "median") # The aggregation of outdegree can occur # for a subset of the graph nodes and this # is made possible by specifying `conditions` # for the nodes graph %>% get_agg_degree_out( agg = "mean", conditions = value < 5.0)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 20, m = 35, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the mean outdegree value from all # nodes in the graph graph %>% get_agg_degree_out( agg = "mean") # Other aggregation functions can be used # (`min`, `max`, `median`, `sum`); let's # get the median in this example graph %>% get_agg_degree_out( agg = "median") # The aggregation of outdegree can occur # for a subset of the graph nodes and this # is made possible by specifying `conditions` # for the nodes graph %>% get_agg_degree_out( agg = "mean", conditions = value < 5.0)
Get a single, aggregate value from the total degree values for all nodes in a graph, or, a subset of graph nodes.
get_agg_degree_total(graph, agg, conditions = NULL)
get_agg_degree_total(graph, agg, conditions = NULL)
graph |
A graph object of class |
agg |
the aggregation function to use for summarizing total degree
values from graph nodes. The following aggregation functions can be used:
|
conditions |
an option to use filtering conditions for the nodes to consider. |
A vector with an aggregate total degree value.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 20, m = 35, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the mean total degree # value from all nodes in # the graph graph %>% get_agg_degree_total( agg = "mean") # Other aggregation functions # can be used (`min`, `max`, # `median`, `sum`); let's get # the median in this example graph %>% get_agg_degree_total( agg = "median") # The aggregation of total # degree can occur for a # subset of the graph nodes # and this is made possible # by specifying `conditions` # for the nodes graph %>% get_agg_degree_total( agg = "mean", conditions = value < 5.0)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 20, m = 35, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the mean total degree # value from all nodes in # the graph graph %>% get_agg_degree_total( agg = "mean") # Other aggregation functions # can be used (`min`, `max`, # `median`, `sum`); let's get # the median in this example graph %>% get_agg_degree_total( agg = "median") # The aggregation of total # degree can occur for a # subset of the graph nodes # and this is made possible # by specifying `conditions` # for the nodes graph %>% get_agg_degree_total( agg = "mean", conditions = value < 5.0)
With a single node serving as the starting point get all nodes connected (i.e., reachable with a traversable path) to that node.
get_all_connected_nodes(graph, node)
get_all_connected_nodes(graph, node)
graph |
A graph object of class |
node |
a single-length vector containing a node ID value. |
A vector of node ID values.
# Create a random graph using the # `add_gnm_graph()` function; it # has an unconnected node (`6`) graph_1 <- create_graph() %>% add_gnm_graph( n = 20, m = 32, set_seed = 23) # There won't be any connected # nodes to `6` so when specifying # this node with `get_all_connected_nodes()` # we get NA back graph_1 %>% get_all_connected_nodes( node = 6) # Any other node in `graph_1` will # provide a vector of all the nodes # other than `6` graph_1 %>% get_all_connected_nodes( node = 1) # The following graph has two # clusters of nodes (i.e., the # graph has two connected components) graph_2 <- create_graph() %>% add_path(n = 6) %>% add_path(n = 4) # In `graph_2`, node `1` is in # the larger of the two # connected components graph_2 %>% get_all_connected_nodes( node = 1) # Also in `graph_2`, node `8` # is in the smaller of the two # connected components graph_2 %>% get_all_connected_nodes( node = 8)
# Create a random graph using the # `add_gnm_graph()` function; it # has an unconnected node (`6`) graph_1 <- create_graph() %>% add_gnm_graph( n = 20, m = 32, set_seed = 23) # There won't be any connected # nodes to `6` so when specifying # this node with `get_all_connected_nodes()` # we get NA back graph_1 %>% get_all_connected_nodes( node = 6) # Any other node in `graph_1` will # provide a vector of all the nodes # other than `6` graph_1 %>% get_all_connected_nodes( node = 1) # The following graph has two # clusters of nodes (i.e., the # graph has two connected components) graph_2 <- create_graph() %>% add_path(n = 6) %>% add_path(n = 4) # In `graph_2`, node `1` is in # the larger of the two # connected components graph_2 %>% get_all_connected_nodes( node = 1) # Also in `graph_2`, node `8` # is in the smaller of the two # connected components graph_2 %>% get_all_connected_nodes( node = 8)
Get the alpha centrality values for all nodes in the graph.
get_alpha_centrality( graph, alpha = 1, exo = 1, weights_attr = NULL, tol = 1e-07 )
get_alpha_centrality( graph, alpha = 1, exo = 1, weights_attr = NULL, tol = 1e-07 )
graph |
A graph object of class |
alpha |
the parameter that specifies the relative importance of endogenous versus exogenous factors in the determination of centrality. |
exo |
the exogenous factors, in most cases this is either a constant (which applies the same factor to every node), or a vector giving the factor for every node. |
weights_attr |
an optional name of the edge attribute to use in the
adjacency matrix. If |
tol |
the tolerance for near-singularities during matrix inversion. The
default value is set to |
A data frame with alpha centrality scores for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get the alpha centrality scores # for all nodes graph %>% get_alpha_centrality() # Add the alpha centrality # scores to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_alpha_centrality(.)) # Display the graph's node # data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get the alpha centrality scores # for all nodes graph %>% get_alpha_centrality() # Add the alpha centrality # scores to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_alpha_centrality(.)) # Display the graph's node # data frame graph %>% get_node_df()
Get the nodes in the graph that are identified as articulation points.
get_articulation_points(graph)
get_articulation_points(graph)
graph |
A graph object of class |
a vector of node IDs.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = "square") # Get the articulation points # in the graph (i.e., those # nodes that if any were to be # removed, the graph would # become disconnected) graph %>% get_articulation_points() # For the articulation points, # change the node shape to # a `circle` graph <- graph %>% select_nodes_by_id( nodes = get_articulation_points(.)) %>% set_node_attrs_ws( node_attr = shape, value = "circle")
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = "square") # Get the articulation points # in the graph (i.e., those # nodes that if any were to be # removed, the graph would # become disconnected) graph %>% get_articulation_points() # For the articulation points, # change the node shape to # a `circle` graph <- graph %>% select_nodes_by_id( nodes = get_articulation_points(.)) %>% set_node_attrs_ws( node_attr = shape, value = "circle")
Get the Kleinberg authority centrality scores for all nodes in the graph.
get_authority_centrality(graph, weights_attr = NULL)
get_authority_centrality(graph, weights_attr = NULL)
graph |
A graph object of class |
weights_attr |
an optional name of the edge attribute to use in the
adjacency matrix. If |
a data frame with authority scores for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the authority centrality scores # for all nodes in the graph graph %>% get_authority_centrality() # Add the authority centrality # scores to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_authority_centrality(.)) # Display the graph's node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the authority centrality scores # for all nodes in the graph graph %>% get_authority_centrality() # Add the authority centrality # scores to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_authority_centrality(.)) # Display the graph's node data frame graph %>% get_node_df()
Get the betweenness centrality scores for all nodes in a graph.
get_betweenness(graph)
get_betweenness(graph)
graph |
A graph object of class |
a data frame with betweenness scores for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get the betweenness scores # for nodes in the graph graph %>% get_betweenness() # Add the betweenness # values to the graph # as a node attribute graph <- graph %>% join_node_attrs( df = get_betweenness(.)) # Display the graph's node # data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get the betweenness scores # for nodes in the graph graph %>% get_betweenness() # Add the betweenness # values to the graph # as a node attribute graph <- graph %>% join_node_attrs( df = get_betweenness(.)) # Display the graph's node # data frame graph %>% get_node_df()
Get the vector cached in a graph object of class dgr_graph
.
get_cache(graph, name = NULL)
get_cache(graph, name = NULL)
graph |
A graph object of class |
name |
the name of the object to extract from the cache. If none supplied, the most recent object added to the cache will be returned. |
A vector.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a graph with 5 nodes and 5 edges graph <- create_graph() %>% add_n_nodes(n = 5) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 8, sd = 2)) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->2") # Cache all values from the node attribute `value` # as a numeric vector graph <- graph %>% set_cache( name = "value", to_cache = get_node_attrs( graph = ., node_attr = value)) # Return the cached vector graph %>% get_cache()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a graph with 5 nodes and 5 edges graph <- create_graph() %>% add_n_nodes(n = 5) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 8, sd = 2)) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->2") # Cache all values from the node attribute `value` # as a numeric vector graph <- graph %>% set_cache( name = "value", to_cache = get_node_attrs( graph = ., node_attr = value)) # Return the cached vector graph %>% get_cache()
Get the closeness centrality values for all nodes in a graph.
get_closeness(graph, direction = "all")
get_closeness(graph, direction = "all")
graph |
A graph object of class |
direction |
using |
A data frame with closeness values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get closeness values for all nodes # in the graph graph %>% get_closeness() # Add the closeness values to # the graph as a node attribute graph <- graph %>% join_node_attrs( df = get_closeness(.)) # Display the graph's node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get closeness values for all nodes # in the graph graph %>% get_closeness() # Add the closeness values to # the graph as a node attribute graph <- graph %>% join_node_attrs( df = get_closeness(.)) # Display the graph's node data frame graph %>% get_node_df()
Get the closeness vitality values for all nodes in the graph.
get_closeness_vitality(graph)
get_closeness_vitality(graph)
graph |
A graph object of class |
A data frame with closeness vitality values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get closeness vitality values # for all nodes in the graph graph %>% get_closeness_vitality() # Add the closeness vitality # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_closeness_vitality(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 12, set_seed = 23) # Get closeness vitality values # for all nodes in the graph graph %>% get_closeness_vitality() # Add the closeness vitality # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_closeness_vitality(.)) # Display the graph's # node data frame graph %>% get_node_df()
Using edge betweenness, obtain the group membership values for each of the nodes in the graph.
get_cmty_edge_btwns(graph)
get_cmty_edge_btwns(graph)
graph |
A graph object of class |
A data frame with group membership assignments for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership # values for all nodes in the # graph through calculation of # the leading non-negative # eigenvector of the modularity # matrix of the graph graph %>% get_cmty_edge_btwns() # Add the group membership # values to the graph # as a node attribute graph <- graph %>% join_node_attrs( df = get_cmty_edge_btwns(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership # values for all nodes in the # graph through calculation of # the leading non-negative # eigenvector of the modularity # matrix of the graph graph %>% get_cmty_edge_btwns() # Add the group membership # values to the graph # as a node attribute graph <- graph %>% join_node_attrs( df = get_cmty_edge_btwns(.)) # Display the graph's # node data frame graph %>% get_node_df()
Through the use of greedy optimization of a modularity score, obtain the group membership values for each of the nodes in the graph. Note that this method only works on graphs without multiple edges.
get_cmty_fast_greedy(graph)
get_cmty_fast_greedy(graph)
graph |
A graph object of class |
a data frame with group membership assignments for each of the nodes.
# Create a graph with a # balanced tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Get the group membership # values for all nodes in # the graph through the greedy # optimization of modularity # algorithm graph %>% get_cmty_fast_greedy() # Add the group membership # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_cmty_fast_greedy(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a graph with a # balanced tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Get the group membership # values for all nodes in # the graph through the greedy # optimization of modularity # algorithm graph %>% get_cmty_fast_greedy() # Add the group membership # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_cmty_fast_greedy(.)) # Display the graph's # node data frame graph %>% get_node_df()
Through the calculation of the leading non-negative eigenvector of the modularity matrix of the graph, obtain the group membership values for each of the nodes in the graph.
get_cmty_l_eigenvec(graph)
get_cmty_l_eigenvec(graph)
graph |
A graph object of class |
A data frame with group membership assignments for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership # values for all nodes in the # graph through calculation of # the leading non-negative # eigenvector of the modularity # matrix of the graph graph %>% get_cmty_l_eigenvec() # Add the group membership # values to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_cmty_l_eigenvec(.)) # Display the graph's node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership # values for all nodes in the # graph through calculation of # the leading non-negative # eigenvector of the modularity # matrix of the graph graph %>% get_cmty_l_eigenvec() # Add the group membership # values to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_cmty_l_eigenvec(.)) # Display the graph's node data frame graph %>% get_node_df()
Through the use of multi-level optimization of a modularity score, obtain the group membership values for each of the nodes in the graph.
get_cmty_louvain(graph)
get_cmty_louvain(graph)
graph |
A graph object of class |
A data frame with group membership assignments for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership values # for all nodes in the graph # through the multi-level # optimization of modularity # algorithm graph %>% get_cmty_louvain() # Add the group membership # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_cmty_louvain(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership values # for all nodes in the graph # through the multi-level # optimization of modularity # algorithm graph %>% get_cmty_louvain() # Add the group membership # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_cmty_louvain(.)) # Display the graph's # node data frame graph %>% get_node_df()
With the Walktrap community finding algorithm, obtain the group membership values for each of the nodes in the graph.
get_cmty_walktrap(graph, steps = 4)
get_cmty_walktrap(graph, steps = 4)
graph |
A graph object of class |
steps |
the number of steps to take for each of the random walks. |
A data frame with group membership assignments for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership # values for all nodes in the # graph through the Walktrap # community finding algorithm graph %>% get_cmty_walktrap() # Add the group membership # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_cmty_walktrap(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the group membership # values for all nodes in the # graph through the Walktrap # community finding algorithm graph %>% get_cmty_walktrap() # Add the group membership # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_cmty_walktrap(.)) # Display the graph's # node data frame graph %>% get_node_df()
With two or more nodes, get the set of common neighboring nodes.
get_common_nbrs(graph, nodes)
get_common_nbrs(graph, nodes)
graph |
A graph object of class |
nodes |
a vector of node ID values of length at least 2. |
a vector of node ID values.
# Create a directed graph with 5 nodes graph <- create_graph() %>% add_path(n = 5) # Find all common neighbor nodes # for nodes `1` and `2` (there are no # common neighbors amongst them) graph %>% get_common_nbrs( nodes = c(1, 2)) # Find all common neighbor nodes for # nodes `1` and `3` graph %>% get_common_nbrs( nodes = c(1, 3))
# Create a directed graph with 5 nodes graph <- create_graph() %>% add_path(n = 5) # Find all common neighbor nodes # for nodes `1` and `2` (there are no # common neighbors amongst them) graph %>% get_common_nbrs( nodes = c(1, 2)) # Find all common neighbor nodes for # nodes `1` and `3` graph %>% get_common_nbrs( nodes = c(1, 3))
Get the coreness values for all nodes in a graph.
get_coreness(graph, direction = "all")
get_coreness(graph, direction = "all")
graph |
A graph object of class |
direction |
using |
A data frame with coreness values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get coreness values for # all nodes in the graph graph %>% get_coreness() # Add the coreness values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_coreness(.)) # Display the graph's node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get coreness values for # all nodes in the graph graph %>% get_coreness() # Add the coreness values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_coreness(.)) # Display the graph's node data frame graph %>% get_node_df()
Get degree distribution data for a graph. Graph degree is represented as a frequency of total degree values over all nodes in the graph.
get_degree_distribution(graph, mode = "total")
get_degree_distribution(graph, mode = "total")
graph |
A graph object of class |
mode |
using |
A data frame with degree frequencies.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the total degree # distribution for the graph graph %>% get_degree_distribution( mode = "total")
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the total degree # distribution for the graph graph %>% get_degree_distribution( mode = "total")
Get histogram data for a graph's degree frequency. The bin width is set to 1 and zero-value degrees are omitted from the output.
get_degree_histogram(graph, mode = "total")
get_degree_histogram(graph, mode = "total")
graph |
A graph object of class |
mode |
using |
A data frame with degree counts.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get degree histogram data for # the graph (reporting total degree) graph %>% get_degree_histogram( mode = "total")
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get degree histogram data for # the graph (reporting total degree) graph %>% get_degree_histogram( mode = "total")
Get the indegree values for all nodes in a graph.
get_degree_in(graph, normalized = FALSE)
get_degree_in(graph, normalized = FALSE)
graph |
A graph object of class |
normalized |
set as |
a data frame with indegree values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the indegree values for # all nodes in the graph graph %>% get_degree_in() # Add the indegree values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_degree_in(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the indegree values for # all nodes in the graph graph %>% get_degree_in() # Add the indegree values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_degree_in(.)) # Display the graph's # node data frame graph %>% get_node_df()
Get the outdegree values for all nodes in a graph.
get_degree_out(graph, normalized = FALSE)
get_degree_out(graph, normalized = FALSE)
graph |
A graph object of class |
normalized |
set as |
A data frame with outdegree values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the outdegree values # for all nodes in the graph graph %>% get_degree_out() # Add the outdegree values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_degree_out(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the outdegree values # for all nodes in the graph graph %>% get_degree_out() # Add the outdegree values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_degree_out(.)) # Display the graph's # node data frame graph %>% get_node_df()
Get the total degree values for all nodes in a graph.
get_degree_total(graph, normalized = FALSE)
get_degree_total(graph, normalized = FALSE)
graph |
A graph object of class |
normalized |
set as |
A data frame with total degree values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the total degree values # for all nodes in the graph graph %>% get_degree_total() # Add the total degree values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_degree_total(.)) # Display the graph's # node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the total degree values # for all nodes in the graph graph %>% get_degree_total() # Add the total degree values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_degree_total(.)) # Display the graph's # node data frame graph %>% get_node_df()
Get the Dice similarity coefficient scores for one or more nodes in a graph.
get_dice_similarity(graph, nodes = NULL, direction = "all", round_to = 3)
get_dice_similarity(graph, nodes = NULL, direction = "all", round_to = 3)
graph |
A graph object of class |
nodes |
an optional vector of node IDs to consider for Dice similarity scores. If not supplied, then similarity scores will be provided for every pair of nodes in the graph. |
direction |
using |
round_to |
the maximum number of decimal places to retain for the Dice
similarity coefficient scores. The default value is |
A matrix with Dice similarity values for each pair of nodes considered.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the Dice similarity # values for nodes `5`, `6`, # and `7` graph %>% get_dice_similarity( nodes = 5:7)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the Dice similarity # values for nodes `5`, `6`, # and `7` graph %>% get_dice_similarity( nodes = 5:7)
Get a data frame with node eccentricity values.
get_eccentricity(graph, mode = "out")
get_eccentricity(graph, mode = "out")
graph |
A graph object of class |
mode |
the mode with which the shortest paths to or from the given
vertices should be calculated for directed graphs. If |
A data frame containing eccentricity values by node ID value.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the eccentricity values for # all nodes in the graph graph %>% get_eccentricity()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the eccentricity values for # all nodes in the graph graph %>% get_eccentricity()
From a graph object of class dgr_graph
, get edge attribute values for one
or more edges.
get_edge_attrs(graph, edge_attr, from = NULL, to = NULL)
get_edge_attrs(graph, edge_attr, from = NULL, to = NULL)
graph |
A graph object of class |
edge_attr |
the name of the attribute for which to get values. |
from |
an optional vector of node IDs from which the edge is outgoing for filtering the list of edges. |
to |
an optional vector of node IDs from which the edge is incoming for filtering the list of edges. |
A named vector of edge attribute values for the attribute given by
edge_attr
by edge.
# Create a simple graph where # edges have an edge attribute # named `value` graph <- create_graph() %>% add_n_nodes(n = 4) %>% { edges <- create_edge_df( from = c(1, 2, 1, 4), to = c(2, 3, 4, 3), rel = "rel") add_edge_df( graph = ., edge_df = edges) } %>% set_edge_attrs( edge_attr = value, values = 1.6, from = 1, to = 2) %>% set_edge_attrs( edge_attr = value, values = 4.3, from = 1, to = 4) %>% set_edge_attrs( edge_attr = value, values = 2.9, from = 2, to = 3) %>% set_edge_attrs( edge_attr = value, values = 8.4, from = 4, to = 3) # Get the values for the # `value` edge attribute graph %>% get_edge_attrs( edge_attr = value) # To only return edge attribute # values for specified edges, use # the `from` and `to` arguments graph %>% get_edge_attrs( edge_attr = value, from = c(1, 2), to = c(2, 3))
# Create a simple graph where # edges have an edge attribute # named `value` graph <- create_graph() %>% add_n_nodes(n = 4) %>% { edges <- create_edge_df( from = c(1, 2, 1, 4), to = c(2, 3, 4, 3), rel = "rel") add_edge_df( graph = ., edge_df = edges) } %>% set_edge_attrs( edge_attr = value, values = 1.6, from = 1, to = 2) %>% set_edge_attrs( edge_attr = value, values = 4.3, from = 1, to = 4) %>% set_edge_attrs( edge_attr = value, values = 2.9, from = 2, to = 3) %>% set_edge_attrs( edge_attr = value, values = 8.4, from = 4, to = 3) # Get the values for the # `value` edge attribute graph %>% get_edge_attrs( edge_attr = value) # To only return edge attribute # values for specified edges, use # the `from` and `to` arguments graph %>% get_edge_attrs( edge_attr = value, from = c(1, 2), to = c(2, 3))
From a graph object of class dgr_graph
, get edge attribute values for one
or more edges.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
get_edge_attrs_ws(graph, edge_attr)
get_edge_attrs_ws(graph, edge_attr)
graph |
A graph object of class |
edge_attr |
the name of the attribute for which to get values. |
A named vector of edge attribute values for the attribute given by
edge_attr
by edge.
# Create a simple graph where # edges have an edge attribute # named `value` graph <- create_graph() %>% add_n_nodes(n = 4) %>% { edges <- create_edge_df( from = c(1, 2, 1, 4), to = c(2, 3, 4, 3), rel = "rel") add_edge_df( graph = ., edge_df = edges) } %>% set_edge_attrs( edge_attr = value, values = 1.6, from = 1, to = 2) %>% set_edge_attrs( edge_attr = value, values = 4.3, from = 1, to = 4) %>% set_edge_attrs( edge_attr = value, values = 2.9, from = 2, to = 3) %>% set_edge_attrs( edge_attr = value, values = 8.4, from = 4, to = 3) # Select the edges defined as # `1`->`3` and `2`->`3` graph <- graph %>% select_edges( from = c(1, 2), to = c(2, 3)) # Get the edge attribute values # for the `value` attribute, limited # to the current edge selection graph %>% get_edge_attrs_ws( edge_attr = value)
# Create a simple graph where # edges have an edge attribute # named `value` graph <- create_graph() %>% add_n_nodes(n = 4) %>% { edges <- create_edge_df( from = c(1, 2, 1, 4), to = c(2, 3, 4, 3), rel = "rel") add_edge_df( graph = ., edge_df = edges) } %>% set_edge_attrs( edge_attr = value, values = 1.6, from = 1, to = 2) %>% set_edge_attrs( edge_attr = value, values = 4.3, from = 1, to = 4) %>% set_edge_attrs( edge_attr = value, values = 2.9, from = 2, to = 3) %>% set_edge_attrs( edge_attr = value, values = 8.4, from = 4, to = 3) # Select the edges defined as # `1`->`3` and `2`->`3` graph <- graph %>% select_edges( from = c(1, 2), to = c(2, 3)) # Get the edge attribute values # for the `value` attribute, limited # to the current edge selection graph %>% get_edge_attrs_ws( edge_attr = value)
Get a count of the number of edge definitions (e.g, 1
-> 2
) where there
are multiple edges (i.e., more than 1 edge of that definition, having
distinct edge ID values). So, for example, if there are 2 edge definitions in
the graph that involve 6 separate edge IDs (3 such edge IDs for each of the
pairs of nodes), the count will be 2
.
get_edge_count_w_multiedge(graph)
get_edge_count_w_multiedge(graph)
graph |
A graph object of class |
A vector with a single, numerical value.
# Create a node data frame (ndf) ndf <- create_node_df( n = 5, label = TRUE) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 4, 4, 3, 5, 1, 3, 4), to = c(4, 1, 1, 2, 2, 2, 2, 1)) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get the total number of edge # definitions (e.g., `4` -> `1`) where # there are multiple edges (i.e., # distinct edges with separate edge # ID values) graph %>% get_edge_count_w_multiedge()
# Create a node data frame (ndf) ndf <- create_node_df( n = 5, label = TRUE) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 4, 4, 3, 5, 1, 3, 4), to = c(4, 1, 1, 2, 2, 2, 2, 1)) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get the total number of edge # definitions (e.g., `4` -> `1`) where # there are multiple edges (i.e., # distinct edges with separate edge # ID values) graph %>% get_edge_count_w_multiedge()
From a graph, obtain an edge data frame with all current edge attributes.
get_edge_df(graph)
get_edge_df(graph)
graph |
A graph object of class |
An edge data frame.
# Create a graph graph <- create_graph() %>% add_n_nodes( n = 1, type = "a") %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "from", type = "b") %>% select_edges_by_node_id( nodes = 3:5) %>% set_edge_attrs_ws( edge_attr = color, value = "green") %>% set_edge_attrs_ws( edge_attr = rel, value = "a") %>% invert_selection %>% set_edge_attrs_ws( edge_attr = color, value = "blue") %>% set_edge_attrs_ws( edge_attr = rel, value = "b") %>% clear_selection() # Get the graph's internal # edge data frame (edf) graph %>% get_edge_df()
# Create a graph graph <- create_graph() %>% add_n_nodes( n = 1, type = "a") %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "from", type = "b") %>% select_edges_by_node_id( nodes = 3:5) %>% set_edge_attrs_ws( edge_attr = color, value = "green") %>% set_edge_attrs_ws( edge_attr = rel, value = "a") %>% invert_selection %>% set_edge_attrs_ws( edge_attr = color, value = "blue") %>% set_edge_attrs_ws( edge_attr = rel, value = "b") %>% clear_selection() # Get the graph's internal # edge data frame (edf) graph %>% get_edge_df()
From a graph object of class dgr_graph
, get the graph's internal edge data
frame that is filtered by the edge ID values currently active as a selection.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
get_edge_df_ws(graph)
get_edge_df_ws(graph)
graph |
A graph object of class |
an edge data frame.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_edge_attrs( edge_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Select edges with ID values # `1` and `3` graph <- graph %>% select_edges_by_edge_id( edges = c(1, 3)) # Get the edge data frame that's # limited to the rows that correspond # to the edge selection graph %>% get_edge_df_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_edge_attrs( edge_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Select edges with ID values # `1` and `3` graph <- graph %>% select_edges_by_edge_id( edges = c(1, 3)) # Get the edge data frame that's # limited to the rows that correspond # to the edge selection graph %>% get_edge_df_ws()
Obtain a vector of edge ID values from a graph object. An optional filter by edge attribute can limit the set of edge ID values returned.
get_edge_ids(graph, conditions = NULL)
get_edge_ids(graph, conditions = NULL)
graph |
A graph object of class |
conditions |
an option to use filtering conditions for the retrieval of edges. |
A vector of edge ID values.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "letter", color = c("red", "green", "grey", "blue"), value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to", color = c("pink", "blue", "blue"), value = c(3.9, 2.5, 7.3)) # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get a vector of all edges in a graph graph %>% get_edge_ids() # Get a vector of edge ID values using a # numeric comparison (i.e., all edges with # `value` attribute greater than 3) get_edge_ids( graph, conditions = value > 3) # Get a vector of edge ID values using # a match pattern (i.e., all edges with # `color` attribute of `pink`) get_edge_ids( graph, conditions = color == "pink") # Use multiple conditions to return edges # with the desired attribute values get_edge_ids( graph, conditions = color == "blue" & value > 5)
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "letter", color = c("red", "green", "grey", "blue"), value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to", color = c("pink", "blue", "blue"), value = c(3.9, 2.5, 7.3)) # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get a vector of all edges in a graph graph %>% get_edge_ids() # Get a vector of edge ID values using a # numeric comparison (i.e., all edges with # `value` attribute greater than 3) get_edge_ids( graph, conditions = value > 3) # Get a vector of edge ID values using # a match pattern (i.e., all edges with # `color` attribute of `pink`) get_edge_ids( graph, conditions = color == "pink") # Use multiple conditions to return edges # with the desired attribute values get_edge_ids( graph, conditions = color == "blue" & value > 5)
Obtain a data frame with detailed information on edges and their interrelationships within the graph.
get_edge_info(graph)
get_edge_info(graph)
graph |
A graph object of class |
A data frame containing information specific to each edge within the graph.
# Create a simple graph graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) # Get information on the # graph's edges graph %>% get_edge_info()
# Create a simple graph graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) # Get information on the # graph's edges graph %>% get_edge_info()
Obtain a vector, data frame, or list of node IDs associated with edges in a graph object. An optional filter by edge attribute can limit the set of edges returned.
get_edges( graph, conditions = NULL, return_type = "vector", return_values = "id" )
get_edges( graph, conditions = NULL, return_type = "vector", return_values = "id" )
graph |
A graph object of class |
conditions |
an option to use filtering conditions for the retrieval of edges. |
return_type |
using |
return_values |
using |
A list, data frame, or a vector object, depending on the value given
to return_type
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, label = c("one", "two", "three", "four"), type = "letter", color = c("red", "green", "grey", "blue"), value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to", color = c("pink", "blue", "blue"), value = c(3.9, 2.5, 7.3)) # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get all edges within a graph, returned as a list graph %>% get_edges( return_type = "vector") # Get all edges within a graph, returned as a # data frame graph %>% get_edges( return_type = "df") # Get all edges returned as a list graph %>% get_edges( return_type = "list") # Get a vector of edges using # a numeric comparison (i.e., # all edges with a `value` # attribute greater than 3) graph %>% get_edges( conditions = value > 3, return_type = "vector") # Get a vector of edges using # a matching condition graph %>% get_edges( conditions = color == "pink", return_type = "vector") # Use multiple conditions to # return edges with the # desired attribute values graph %>% get_edges( conditions = color == "blue" & value > 3, return_type = "vector") # Use `return_values = "label"` # to return the labels of the # connected nodes graph %>% get_edges( conditions = color == "blue" & value > 3, return_type = "vector", return_values = "label")
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, label = c("one", "two", "three", "four"), type = "letter", color = c("red", "green", "grey", "blue"), value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to", color = c("pink", "blue", "blue"), value = c(3.9, 2.5, 7.3)) # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get all edges within a graph, returned as a list graph %>% get_edges( return_type = "vector") # Get all edges within a graph, returned as a # data frame graph %>% get_edges( return_type = "df") # Get all edges returned as a list graph %>% get_edges( return_type = "list") # Get a vector of edges using # a numeric comparison (i.e., # all edges with a `value` # attribute greater than 3) graph %>% get_edges( conditions = value > 3, return_type = "vector") # Get a vector of edges using # a matching condition graph %>% get_edges( conditions = color == "pink", return_type = "vector") # Use multiple conditions to # return edges with the # desired attribute values graph %>% get_edges( conditions = color == "blue" & value > 3, return_type = "vector") # Use `return_values = "label"` # to return the labels of the # connected nodes graph %>% get_edges( conditions = color == "blue" & value > 3, return_type = "vector", return_values = "label")
Get the eigen centrality values for all nodes in the graph.
get_eigen_centrality(graph, weights_attr = NULL)
get_eigen_centrality(graph, weights_attr = NULL)
graph |
A graph object of class |
weights_attr |
An optional name of the edge attribute to use in the
adjacency matrix. If |
A data frame with eigen centrality scores for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the eigen centrality scores # for nodes in the graph graph %>% get_eigen_centrality()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the eigen centrality scores # for nodes in the graph graph %>% get_eigen_centrality()
Get the girth of a graph, which is the length of the shortest circle in the graph. Loop edges and multiple edges are not considered. If the graph contains no cycles then zero is returned.
get_girth(graph)
get_girth(graph)
graph |
A graph object of class |
A single numeric value representing the length of the shortest circle in the graph.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's girth graph %>% get_girth() # Create a full graph and then # get the girth for that create_graph() %>% add_full_graph(n = 10) %>% get_girth()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's girth graph %>% get_girth() # Create a full graph and then # get the girth for that create_graph() %>% add_full_graph(n = 10) %>% get_girth()
Get the available global attributes for a graph object of class dgr_graph
.
get_global_graph_attr_info(graph)
get_global_graph_attr_info(graph)
graph |
A graph object of class |
A data frame containing global attributes for the graph.
# Create a new, empty graph graph <- create_graph() # View the graph's set of # global attributes graph %>% get_global_graph_attr_info()
# Create a new, empty graph graph <- create_graph() # View the graph's set of # global attributes graph %>% get_global_graph_attr_info()
Get a tibble of the available graph actions, which contains information on
function invocations to be called on the graph at every transformation step,
or, when manually invoked with the trigger_graph_actions()
function.
get_graph_actions(graph)
get_graph_actions(graph)
graph |
A graph object of class |
A df_tbl
object.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Add a graph action that sets a node # attr column with a function; the # main function `set_node_attr_w_fcn()` # uses the `get_betweenness()` function # to provide betweenness values in the # `btwns` column graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_betweenness", column_name = "btwns", action_name = "get_btwns") # To ensure that the action is # available in the graph, use the # `get_graph_actions()` function graph %>% get_graph_actions()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Add a graph action that sets a node # attr column with a function; the # main function `set_node_attr_w_fcn()` # uses the `get_betweenness()` function # to provide betweenness values in the # `btwns` column graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_betweenness", column_name = "btwns", action_name = "get_btwns") # To ensure that the action is # available in the graph, use the # `get_graph_actions()` function graph %>% get_graph_actions()
Using a graph series object of type dgr_graph_1D
, get a graph object.
get_graph_from_graph_series(graph_series, graph_no)
get_graph_from_graph_series(graph_series, graph_no)
graph_series |
A graph series object of type |
graph_no |
The index of the graph in the graph series. |
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Get the second graph in the series extracted_graph <- series %>% get_graph_from_graph_series( graph_no = 2)
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Get the second graph in the series extracted_graph <- series %>% get_graph_from_graph_series( graph_no = 2)
Get a data frame with metrics for a graph.
get_graph_info(graph)
get_graph_info(graph)
graph |
A graph object of class |
A data frame containing metrics pertaining to the graph
## Not run: # Import a GML graph file available # in the DiagrammeR package karate_club <- system.file( "extdata", "karate.gml", package = "DiagrammeR") %>% import_graph() %>% set_graph_name("karate") # Display a data frame with # graph information karate_club %>% get_graph_info() ## End(Not run)
## Not run: # Import a GML graph file available # in the DiagrammeR package karate_club <- system.file( "extdata", "karate.gml", package = "DiagrammeR") %>% import_graph() %>% set_graph_name("karate") # Display a data frame with # graph information karate_club %>% get_graph_info() ## End(Not run)
Get a tibble of the graph log, which contains information on the functions called on the graph that resulted in some transformation of the graph.
get_graph_log(graph)
get_graph_log(graph)
graph |
A graph object of class |
A df_tbl
object.
# Create a random graph using the # `add_gnm_graph()` function and # delete 2 nodes from the graph graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) %>% delete_node(node = 5) %>% delete_node(node = 7) # Get the graph log, which is a # record of all graph transformations graph %>% get_graph_log()
# Create a random graph using the # `add_gnm_graph()` function and # delete 2 nodes from the graph graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) %>% delete_node(node = 5) %>% delete_node(node = 7) # Get the graph log, which is a # record of all graph transformations graph %>% get_graph_log()
Get the name of a graph object of class dgr_graph
.
get_graph_name(graph)
get_graph_name(graph)
graph |
A graph object of class |
A single-length character vector with the assigned graph name. If a graph name has not been set, NA is returned.
# Create an empty graph graph <- create_graph() # Provide the new graph with a name graph <- set_graph_name( graph, name = "the_name") # Get the graph's name graph %>% get_graph_name()
# Create an empty graph graph <- create_graph() # Provide the new graph with a name graph <- set_graph_name( graph, name = "the_name") # Get the graph's name graph %>% get_graph_name()
Obtain a data frame with information on the graphs within a graph series.
get_graph_series_info(graph_series)
get_graph_series_info(graph_series)
graph_series |
A graph series object of type |
A data frame containing information on the graphs within the supplied graph series.
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Get information on the graphs in the series series %>% get_graph_series_info()
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Get information on the graphs in the series series %>% get_graph_series_info()
Get the time and timezone for a graph object of class dgr_graph
.
get_graph_time(graph)
get_graph_time(graph)
graph |
A graph object of class |
A single-length POSIXct
vector with the assigned graph time.
# Create an empty graph and # set the graph's time; if nothing # is supplied for the `tz` argument, # `GMT` is used as the time zone graph <- create_graph() %>% set_graph_time( time = "2015-10-25 15:23:00") # Get the graph's time as a POSIXct # object using `get_graph_time()` graph %>% get_graph_time()
# Create an empty graph and # set the graph's time; if nothing # is supplied for the `tz` argument, # `GMT` is used as the time zone graph <- create_graph() %>% set_graph_time( time = "2015-10-25 15:23:00") # Get the graph's time as a POSIXct # object using `get_graph_time()` graph %>% get_graph_time()
Get the Jaccard similarity coefficient scores for one or more nodes in a graph.
get_jaccard_similarity(graph, nodes = NULL, direction = "all", round_to = 3)
get_jaccard_similarity(graph, nodes = NULL, direction = "all", round_to = 3)
graph |
A graph object of class |
nodes |
An optional vector of node IDs to consider for Jaccard similarity scores. If not supplied, then similarity scores will be provided for every pair of nodes in the graph. |
direction |
Using |
round_to |
The maximum number of decimal places to retain for the
Jaccard similarity coefficient scores. The default value is |
A matrix with Jaccard similarity values for each pair of nodes considered.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the Jaccard similarity # values for nodes `5`, `6`, # and `7` graph %>% get_jaccard_similarity( nodes = 5:7)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the Jaccard similarity # values for nodes `5`, `6`, # and `7` graph %>% get_jaccard_similarity( nodes = 5:7)
Get the last edges that were created in a graph object of class dgr_graph
.
This function should ideally be used just after creating the edges.
get_last_edges_created(graph)
get_last_edges_created(graph)
graph |
A graph object of class |
A vector of edge ID values.
# Create a graph and add a cycle and then # a tree in 2 separate function calls graph <- create_graph() %>% add_cycle( n = 3, rel = "a") %>% add_balanced_tree( k = 2, h = 2, rel = "b") # Get the last edges created (all edges # from the tree) graph %>% get_last_edges_created()
# Create a graph and add a cycle and then # a tree in 2 separate function calls graph <- create_graph() %>% add_cycle( n = 3, rel = "a") %>% add_balanced_tree( k = 2, h = 2, rel = "b") # Get the last edges created (all edges # from the tree) graph %>% get_last_edges_created()
Get the last nodes that were created in a graph object of class dgr_graph
.
Provides a vector of node ID values. This function should ideally be used
just after creating the nodes.
get_last_nodes_created(graph)
get_last_nodes_created(graph)
graph |
A graph object of class |
A vector of node ID values.
# Create a graph and add 4 nodes # in 2 separate function calls graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("a_1", "a_2")) %>% add_n_nodes( n = 2, type = "b", label = c("b_1", "b_2")) # Get the last nodes created (2 nodes # from the last function call) graph %>% get_last_nodes_created()
# Create a graph and add 4 nodes # in 2 separate function calls graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("a_1", "a_2")) %>% add_n_nodes( n = 2, type = "b", label = c("b_1", "b_2")) # Get the last nodes created (2 nodes # from the last function call) graph %>% get_last_nodes_created()
Get the leverage centrality values for all nodes in the graph. Leverage centrality is a measure of the relationship between the degree of a given node and the degree of each of its neighbors, averaged over all neighbors. A node with negative leverage centrality is influenced by its neighbors, as the neighbors connect and interact with far more nodes. A node with positive leverage centrality influences its neighbors since the neighbors tend to have far fewer connections.
get_leverage_centrality(graph)
get_leverage_centrality(graph)
graph |
A graph object of class |
A data frame with leverage centrality values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get leverage centrality values # for all nodes in the graph graph %>% get_leverage_centrality() # Add the leverage centrality # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_leverage_centrality(.)) # Display the graph's node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph( directed = FALSE) %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get leverage centrality values # for all nodes in the graph graph %>% get_leverage_centrality() # Add the leverage centrality # values to the graph as a # node attribute graph <- graph %>% join_node_attrs( df = get_leverage_centrality(.)) # Display the graph's node data frame graph %>% get_node_df()
Get the diameter of a graph, which is the largest eccentricity in the graph. The graph eccentricity of a node is its shortest path from the farthest other node in the graph.
get_max_eccentricity(graph)
get_max_eccentricity(graph)
graph |
A graph object of class |
A single numeric value representing the maximum eccentricity of the graph.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's maximum # eccentricity graph %>% get_max_eccentricity() # Create a full graph and then # get the maximum eccentricity # value for that create_graph() %>% add_full_graph(n = 10) %>% get_max_eccentricity()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's maximum # eccentricity graph %>% get_max_eccentricity() # Create a full graph and then # get the maximum eccentricity # value for that create_graph() %>% add_full_graph(n = 10) %>% get_max_eccentricity()
Get the mean distance of a graph, which is the average path length in the graph. This operates through calculation of the shortest paths between all pairs of nodes.
get_mean_distance(graph)
get_mean_distance(graph)
graph |
A graph object of class |
A single numeric value representing the mean distance of the graph.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the mean distance graph %>% get_mean_distance() # Create a full graph and then # get the mean distance value create_graph() %>% add_full_graph(n = 10) %>% get_mean_distance()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the mean distance graph %>% get_mean_distance() # Create a full graph and then # get the mean distance value create_graph() %>% add_full_graph(n = 10) %>% get_mean_distance()
Get the minimum cut between source and sink nodes. This is the minimum total capacity of edges needed for removal in order to eliminate all paths from the source and sink nodes.
get_min_cut_between(graph, from, to)
get_min_cut_between(graph, from, to)
graph |
A graph object of class |
from |
The node ID for the source node. |
to |
The node ID for the sink or target node. |
A single numeric value representing the minimum total edge capacity removed to disconnect the source and sink nodes.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the minimum cut # between nodes `1` and `4` graph %>% get_min_cut_between( from = 1, to = 2) # Create a cycle graph with # randomized values given to all # edges as the `capacity` attribute graph_capacity <- create_graph() %>% add_cycle(n = 5) %>% select_edges() %>% set_edge_attrs_ws( edge_attr = capacity, value = rnorm( n = count_edges(.), mean = 5, sd = 1)) %>% clear_selection() # Determine the minimum cut # between nodes `1` and `4` for # this graph, where `capacity`is # set as an edge attribute graph_capacity %>% get_min_cut_between( from = 1, to = 2) # Create a full graph and then # get the minimum cut requirement # between nodes `2` and `8` create_graph() %>% add_full_graph(n = 10) %>% get_min_cut_between( from = 2, to = 8)
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the minimum cut # between nodes `1` and `4` graph %>% get_min_cut_between( from = 1, to = 2) # Create a cycle graph with # randomized values given to all # edges as the `capacity` attribute graph_capacity <- create_graph() %>% add_cycle(n = 5) %>% select_edges() %>% set_edge_attrs_ws( edge_attr = capacity, value = rnorm( n = count_edges(.), mean = 5, sd = 1)) %>% clear_selection() # Determine the minimum cut # between nodes `1` and `4` for # this graph, where `capacity`is # set as an edge attribute graph_capacity %>% get_min_cut_between( from = 1, to = 2) # Create a full graph and then # get the minimum cut requirement # between nodes `2` and `8` create_graph() %>% add_full_graph(n = 10) %>% get_min_cut_between( from = 2, to = 8)
Get the radius of a graph, which is the smallest eccentricity in the graph. The graph eccentricity of a node is its shortest path from the farthest other node in the graph.
get_min_eccentricity(graph, direction = "all")
get_min_eccentricity(graph, direction = "all")
graph |
A graph object of class |
direction |
Using |
A single numeric value representing the minimum eccentricity of the graph.
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's minimum # eccentricity graph %>% get_min_eccentricity() # Create a full graph and then # get the minimum eccentricity # value for that create_graph() %>% add_full_graph(n = 10) %>% get_min_eccentricity()
# Create a cycle graph graph <- create_graph() %>% add_cycle(n = 5) # Determine the graph's minimum # eccentricity graph %>% get_min_eccentricity() # Create a full graph and then # get the minimum eccentricity # value for that create_graph() %>% add_full_graph(n = 10) %>% get_min_eccentricity()
Get a count of the number of multiple edges in the graph. Included in the
count is the number of separate edges that share the same edge definition
(i.e., same pair of nodes) across the entire graph. So, for example, if there
are 2 edge definitions in the graph that involve 6 separate edge IDs, the
count will be 4
.
get_multiedge_count(graph)
get_multiedge_count(graph)
graph |
A graph object of class |
A vector with a single, numerical value.
# Create a node data frame (ndf) ndf <- create_node_df( n = 5, label = TRUE) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 4, 4, 3, 5, 1, 3, 4), to = c(4, 1, 1, 2, 2, 2, 2, 1)) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get the total number of multiple # edges (those edges that share an # edge definition) in the graph graph %>% get_multiedge_count()
# Create a node data frame (ndf) ndf <- create_node_df( n = 5, label = TRUE) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 4, 4, 3, 5, 1, 3, 4), to = c(4, 1, 1, 2, 2, 2, 2, 1)) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get the total number of multiple # edges (those edges that share an # edge definition) in the graph graph %>% get_multiedge_count()
With one or more nodes, get the set of all neighboring nodes.
get_nbrs(graph, nodes)
get_nbrs(graph, nodes)
graph |
A graph object of class |
nodes |
A vector of node ID values. |
A vector of node ID values.
# Create a simple, directed graph with 5 # nodes and 4 edges graph <- create_graph() %>% add_path(n = 5) # Find all neighbor nodes for node `2` graph %>% get_nbrs(nodes = 2) # Find all neighbor nodes for nodes `1` # and `5` graph %>% get_nbrs(nodes = c(1, 5)) # Color node `3` with purple, get its # neighbors and color those nodes green graph <- graph %>% select_nodes_by_id(nodes = 3) %>% set_node_attrs_ws( node_attr = color, value = "purple") %>% clear_selection() %>% select_nodes_by_id( nodes = get_nbrs( graph = ., nodes = 3)) %>% set_node_attrs_ws( node_attr = color, value = "green")
# Create a simple, directed graph with 5 # nodes and 4 edges graph <- create_graph() %>% add_path(n = 5) # Find all neighbor nodes for node `2` graph %>% get_nbrs(nodes = 2) # Find all neighbor nodes for nodes `1` # and `5` graph %>% get_nbrs(nodes = c(1, 5)) # Color node `3` with purple, get its # neighbors and color those nodes green graph <- graph %>% select_nodes_by_id(nodes = 3) %>% set_node_attrs_ws( node_attr = color, value = "purple") %>% clear_selection() %>% select_nodes_by_id( nodes = get_nbrs( graph = ., nodes = 3)) %>% set_node_attrs_ws( node_attr = color, value = "green")
From a graph object of class dgr_graph
, get node attribute values for one
or more nodes.
get_node_attrs(graph, node_attr, nodes = NULL)
get_node_attrs(graph, node_attr, nodes = NULL)
graph |
A graph object of class |
node_attr |
The name of the attribute for which to get values. |
nodes |
An optional vector of node IDs for filtering list of nodes present in the graph or node data frame. |
A named vector of node attribute values for the attribute given by
node_attr
by node ID.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Get all of the values from # the `value` node attribute # as a named vector graph %>% get_node_attrs( node_attr = value) # To only return node attribute # values for specified nodes, # use the `nodes` argument graph %>% get_node_attrs( node_attr = value, nodes = c(1, 3))
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Get all of the values from # the `value` node attribute # as a named vector graph %>% get_node_attrs( node_attr = value) # To only return node attribute # values for specified nodes, # use the `nodes` argument graph %>% get_node_attrs( node_attr = value, nodes = c(1, 3))
From a graph object of class dgr_graph
, get node attribute values from
nodes currently active as a selection.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
get_node_attrs_ws(graph, node_attr)
get_node_attrs_ws(graph, node_attr)
graph |
A graph object of class |
node_attr |
The name of the attribute for which to get values. |
A named vector of node attribute values for the attribute given by
node_attr
by node ID.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Select nodes with ID values # `1` and `3` graph <- graph %>% select_nodes_by_id( nodes = c(1, 3)) # Get the node attribute values # for the `value` attribute, limited # to the current node selection graph %>% get_node_attrs_ws( node_attr = value)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Select nodes with ID values # `1` and `3` graph <- graph %>% select_nodes_by_id( nodes = c(1, 3)) # Get the node attribute values # for the `value` attribute, limited # to the current node selection graph %>% get_node_attrs_ws( node_attr = value)
From a graph, obtain a node data frame with all current node attributes.
get_node_df(graph)
get_node_df(graph)
graph |
A graph object of class |
A node data frame.
# Create a graph graph <- create_graph() %>% add_n_nodes( n = 1, type = "a") %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "from", type = "b") %>% select_nodes_by_id( nodes = 1) %>% set_node_attrs_ws( node_attr = value, value = 25.3) %>% clear_selection() %>% select_nodes_by_id( nodes = 2:4) %>% set_node_attrs_ws( node_attr = color, value = "grey70") %>% invert_selection() %>% set_node_attrs_ws( node_attr = color, value = "grey80") %>% clear_selection() # Get the graph's internal node # data frame (ndf) graph %>% get_node_df()
# Create a graph graph <- create_graph() %>% add_n_nodes( n = 1, type = "a") %>% select_last_nodes_created() %>% add_n_nodes_ws( n = 5, direction = "from", type = "b") %>% select_nodes_by_id( nodes = 1) %>% set_node_attrs_ws( node_attr = value, value = 25.3) %>% clear_selection() %>% select_nodes_by_id( nodes = 2:4) %>% set_node_attrs_ws( node_attr = color, value = "grey70") %>% invert_selection() %>% set_node_attrs_ws( node_attr = color, value = "grey80") %>% clear_selection() # Get the graph's internal node # data frame (ndf) graph %>% get_node_df()
From a graph object of class dgr_graph
, get the graph's internal node data
frame that is filtered by the node ID values currently active as a selection.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
get_node_df_ws(graph)
get_node_df_ws(graph)
graph |
A graph object of class |
A node data frame.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Select nodes with ID values # `1` and `3` graph <- graph %>% select_nodes_by_id( nodes = c(1, 3)) # Get the node data frame that's # limited to the rows that correspond # to the node selection graph %>% get_node_df_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # Select nodes with ID values # `1` and `3` graph <- graph %>% select_nodes_by_id( nodes = c(1, 3)) # Get the node data frame that's # limited to the rows that correspond # to the node selection graph %>% get_node_df_ws()
Obtain a vector of node ID values from a graph object. An optional filter by node attribute can limit the set of node ID values returned.
get_node_ids(graph, conditions = NULL)
get_node_ids(graph, conditions = NULL)
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the retrieval of nodes. |
A vector of node ID values.
# Create a node data # frame (ndf) ndf <- create_node_df( n = 4, type = "letter", color = c( "red", "green", "blue", "blue"), value = c( 3.5, 2.6, 9.4, 2.7)) # Create a graph using # the ndf graph <- create_graph( nodes_df = ndf) # Get a vector of all nodes in a graph graph %>% get_node_ids() # Get a vector of node ID values using a # numeric comparison (i.e., all nodes with # `value` attribute greater than 3) graph %>% get_node_ids( conditions = value > 3) # Get a vector of node ID values using # a match pattern (i.e., all nodes with # `color` attribute of `green`) graph %>% get_node_ids( conditions = color == "green") # Use multiple conditions to return nodes # with the desired attribute values graph %>% get_node_ids( conditions = color == "blue" & value > 5)
# Create a node data # frame (ndf) ndf <- create_node_df( n = 4, type = "letter", color = c( "red", "green", "blue", "blue"), value = c( 3.5, 2.6, 9.4, 2.7)) # Create a graph using # the ndf graph <- create_graph( nodes_df = ndf) # Get a vector of all nodes in a graph graph %>% get_node_ids() # Get a vector of node ID values using a # numeric comparison (i.e., all nodes with # `value` attribute greater than 3) graph %>% get_node_ids( conditions = value > 3) # Get a vector of node ID values using # a match pattern (i.e., all nodes with # `color` attribute of `green`) graph %>% get_node_ids( conditions = color == "green") # Use multiple conditions to return nodes # with the desired attribute values graph %>% get_node_ids( conditions = color == "blue" & value > 5)
Obtain a data frame with detailed information on nodes and their interrelationships within the graph.
get_node_info(graph)
get_node_info(graph)
graph |
A graph object of class |
A data frame containing information specific to each node within the graph.
# Create a simple graph graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) # Get information on the graph's nodes graph %>% get_node_info()
# Create a simple graph graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) # Get information on the graph's nodes graph %>% get_node_info()
Get the set of all nodes not neighboring a single graph node.
get_non_nbrs(graph, node)
get_non_nbrs(graph, node)
graph |
A graph object of class |
node |
A single-length vector containing a node ID value. |
A vector of node ID values.
# Create a simple, directed graph with 5 # nodes and 4 edges graph <- create_graph() %>% add_path(n = 5) # Find all non-neighbors of node `2` graph %>% get_non_nbrs(node = 2)
# Create a simple, directed graph with 5 # nodes and 4 edges graph <- create_graph() %>% add_path(n = 5) # Find all non-neighbors of node `2` graph %>% get_non_nbrs(node = 2)
Get the PageRank values for all nodes in the graph.
get_pagerank(graph, directed = TRUE, damping = 0.85)
get_pagerank(graph, directed = TRUE, damping = 0.85)
graph |
A graph object of class |
directed |
If |
damping |
The damping factor. The default value is set to |
A data frame with PageRank values for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the PageRank scores # for all nodes in the graph graph %>% get_pagerank() # Colorize nodes according to their # PageRank scores graph <- graph %>% join_node_attrs( df = get_pagerank(graph = .)) %>% colorize_node_attrs( node_attr_from = pagerank, node_attr_to = fillcolor, palette = "RdYlGn")
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the PageRank scores # for all nodes in the graph graph %>% get_pagerank() # Colorize nodes according to their # PageRank scores graph <- graph %>% join_node_attrs( df = get_pagerank(graph = .)) %>% colorize_node_attrs( node_attr_from = pagerank, node_attr_to = fillcolor, palette = "RdYlGn")
Obtain a list of all possible paths from a given node within a directed graph.
get_paths( graph, from = NULL, to = NULL, shortest_path = FALSE, longest_path = FALSE, distance = NULL )
get_paths( graph, from = NULL, to = NULL, shortest_path = FALSE, longest_path = FALSE, distance = NULL )
graph |
A graph object of class |
from |
The node from which all paths will be determined. |
to |
The node to which all paths will be determined. |
shortest_path |
An option to return paths that are the shortest in the set of all determined paths. |
longest_path |
An option to return paths that are the longest in the set of all determined paths. |
distance |
A vector of integer values that specify which of the valid paths to return when filtering by distance. |
A list of paths, sorted by ascending traversal length, comprising vectors of node IDs in sequence of traversal through the graph.
# Create a simple graph graph <- create_graph() %>% add_n_nodes(n = 8) %>% add_edge(from = 1, to = 2) %>% add_edge(from = 1, to = 3) %>% add_edge(from = 3, to = 4) %>% add_edge(from = 3, to = 5) %>% add_edge(from = 4, to = 6) %>% add_edge(from = 2, to = 7) %>% add_edge(from = 7, to = 5) %>% add_edge(from = 4, to = 8) # Get a list of all paths outward from node `1` graph %>% get_paths(from = 1) # Get a list of all paths leading to node `6` graph %>% get_paths(to = 6) # Get a list of all paths from `1` to `5` graph %>% get_paths( from = 1, to = 5) # Get a list of all paths from `1` up to a distance # of 2 node traversals graph %>% get_paths( from = 1, distance = 2) # Get a list of the shortest paths from `1` to `5` get_paths( graph, from = 1, to = 5, shortest_path = TRUE) # Get a list of the longest paths from `1` to `5` get_paths( graph, from = 1, to = 5, longest_path = TRUE)
# Create a simple graph graph <- create_graph() %>% add_n_nodes(n = 8) %>% add_edge(from = 1, to = 2) %>% add_edge(from = 1, to = 3) %>% add_edge(from = 3, to = 4) %>% add_edge(from = 3, to = 5) %>% add_edge(from = 4, to = 6) %>% add_edge(from = 2, to = 7) %>% add_edge(from = 7, to = 5) %>% add_edge(from = 4, to = 8) # Get a list of all paths outward from node `1` graph %>% get_paths(from = 1) # Get a list of all paths leading to node `6` graph %>% get_paths(to = 6) # Get a list of all paths from `1` to `5` graph %>% get_paths( from = 1, to = 5) # Get a list of all paths from `1` up to a distance # of 2 node traversals graph %>% get_paths( from = 1, distance = 2) # Get a list of the shortest paths from `1` to `5` get_paths( graph, from = 1, to = 5, shortest_path = TRUE) # Get a list of the longest paths from `1` to `5` get_paths( graph, from = 1, to = 5, longest_path = TRUE)
Get those nodes that are part of the graph periphery (i.e., have the maximum eccentricity in the graph).
get_periphery(graph)
get_periphery(graph)
graph |
A graph object of class |
A vector of node IDs.
# Create a random graph using the # `add_gnm_graph()` function and # get the nodes in the graph periphery create_graph() %>% add_gnm_graph( n = 28, m = 35, set_seed = 23) %>% get_periphery()
# Create a random graph using the # `add_gnm_graph()` function and # get the nodes in the graph periphery create_graph() %>% add_gnm_graph( n = 28, m = 35, set_seed = 23) %>% get_periphery()
Provides a vector of node IDs for all nodes that have a connection to the given node.
get_predecessors(graph, node)
get_predecessors(graph, node)
graph |
A graph object of class |
node |
A node ID for the selected node. |
A vector of node ID values.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a node data frame (ndf) ndf <- create_node_df(n = 26) # Create an edge data # frame (edf) edf <- create_edge_df( from = sample( 1:26, replace = TRUE), to = sample( 1:26, replace = TRUE)) # From the ndf and edf, # create a graph object graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get predecessors for node # `23` in the graph graph %>% get_predecessors( node = 23) # If there are no predecessors, # `NA` is returned graph %>% get_predecessors( node = 26)
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a node data frame (ndf) ndf <- create_node_df(n = 26) # Create an edge data # frame (edf) edf <- create_edge_df( from = sample( 1:26, replace = TRUE), to = sample( 1:26, replace = TRUE)) # From the ndf and edf, # create a graph object graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get predecessors for node # `23` in the graph graph %>% get_predecessors( node = 23) # If there are no predecessors, # `NA` is returned graph %>% get_predecessors( node = 26)
Get the radiality centrality for all nodes in a graph. These scores describe the ease to which nodes can reach other nodes.
get_radiality(graph, direction = "all")
get_radiality(graph, direction = "all")
graph |
A graph object of class |
direction |
Using |
A data frame with radiality centrality scores for each of the nodes.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the radiality scores for nodes in the graph graph %>% get_radiality() # Add the radiality values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_radiality(.)) # Display the graph's node data frame graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Get the radiality scores for nodes in the graph graph %>% get_radiality() # Add the radiality values # to the graph as a node # attribute graph <- graph %>% join_node_attrs( df = get_radiality(.)) # Display the graph's node data frame graph %>% get_node_df()
Get the reciprocity of a directed graph. The reciprocity of a graph is the
fraction of reciprocal edges (e.g., 1
-> 2
and 2
-> 1
) over all edges
available in the graph. Note that for an undirected graph, all edges are
reciprocal. This function does not consider loop edges (e.g., 1
-> 1
).
get_reciprocity(graph)
get_reciprocity(graph)
graph |
A graph object of class |
A single, numerical value that is the ratio value of reciprocal edges over all graph edges.
# Define a graph where 2 edge definitions # have pairs of reciprocal edges graph <- create_graph() %>% add_cycle(n = 3) %>% add_node( from = 1, to = 1) %>% add_node( from = 1, to = 1) # Get the graph reciprocity, which will # be calculated as the ratio 4/7 (where # 4 is the number reciprocating edges # and 7 is the total number of edges # in the graph) graph %>% get_reciprocity() # For an undirected graph, all edges # are reciprocal, so the ratio will # always be 1 graph %>% set_graph_undirected() %>% get_reciprocity() # For a graph with no edges, the graph # reciprocity cannot be determined (and # the same NA result is obtained from an # empty graph) create_graph() %>% add_n_nodes(n = 5) %>% get_reciprocity()
# Define a graph where 2 edge definitions # have pairs of reciprocal edges graph <- create_graph() %>% add_cycle(n = 3) %>% add_node( from = 1, to = 1) %>% add_node( from = 1, to = 1) # Get the graph reciprocity, which will # be calculated as the ratio 4/7 (where # 4 is the number reciprocating edges # and 7 is the total number of edges # in the graph) graph %>% get_reciprocity() # For an undirected graph, all edges # are reciprocal, so the ratio will # always be 1 graph %>% set_graph_undirected() %>% get_reciprocity() # For a graph with no edges, the graph # reciprocity cannot be determined (and # the same NA result is obtained from an # empty graph) create_graph() %>% add_n_nodes(n = 5) %>% get_reciprocity()
Determine which nodes in a graph belong to different strongly connected components.
get_s_connected_cmpts(graph)
get_s_connected_cmpts(graph)
graph |
A graph object of class |
A data frame with nodes and their membership in different strongly connected components.
suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a graph with a random # connection between 2 different # node cycles graph <- create_graph() %>% add_cycle( n = 3, type = "cycle_1") %>% add_cycle( n = 4, type = "cycle_2") %>% add_edge( from = get_node_ids( graph = ., conditions = type == "cycle_1") %>% sample(size = 1), to = get_node_ids( graph = ., conditions = type == "cycle_2") %>% sample(size = 1)) # Get the strongly connected # components as a data frame of # nodes and their groupings graph %>% get_s_connected_cmpts()
suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a graph with a random # connection between 2 different # node cycles graph <- create_graph() %>% add_cycle( n = 3, type = "cycle_1") %>% add_cycle( n = 4, type = "cycle_2") %>% add_edge( from = get_node_ids( graph = ., conditions = type == "cycle_1") %>% sample(size = 1), to = get_node_ids( graph = ., conditions = type == "cycle_2") %>% sample(size = 1)) # Get the strongly connected # components as a data frame of # nodes and their groupings graph %>% get_s_connected_cmpts()
Get the current selection of node IDs or edge IDs from a graph object of
class dgr_graph
.
get_selection(graph)
get_selection(graph)
graph |
A graph object of class |
A vector with the current selection of node or edge ID values.
# Create a simple graph graph <- create_graph() %>% add_path(n = 6) # Select node `4`, then select # all nodes a distance of 1 away # from node `4`, and finally # return the selection of nodes as # a vector object graph %>% select_nodes(nodes = 4) %>% select_nodes_in_neighborhood( node = 4, distance = 1) %>% get_selection() # Select edges associated with # node `4` and return the # selection of edges graph %>% select_edges_by_node_id( nodes = 4) %>% get_selection()
# Create a simple graph graph <- create_graph() %>% add_path(n = 6) # Select node `4`, then select # all nodes a distance of 1 away # from node `4`, and finally # return the selection of nodes as # a vector object graph %>% select_nodes(nodes = 4) %>% select_nodes_in_neighborhood( node = 4, distance = 1) %>% get_selection() # Select edges associated with # node `4` and return the # selection of edges graph %>% select_edges_by_node_id( nodes = 4) %>% get_selection()
With a graph a single node serving as the starting point, get those nodes in a potential neighborhood of nodes (adjacent to the starting node) that have a common or similar (within threshold values) node attribute to the starting node.
get_similar_nbrs(graph, node, node_attr, tol_abs = NULL, tol_pct = NULL)
get_similar_nbrs(graph, node, node_attr, tol_abs = NULL, tol_pct = NULL)
graph |
A graph object of class |
node |
A single-length vector containing a node ID value. |
node_attr |
The name of the node attribute to use to compare with adjacent nodes. |
tol_abs |
If the values contained in the node attribute |
tol_pct |
If the values contained in the node attribute |
A vector of node ID values.
# Getting similar neighbors can # be done through numerical comparisons; # start by creating a random, directed # graph with 18 nodes and 22 edges # using the `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 18, m = 25, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(0)) # Starting with node `10`, we # can test whether any nodes # adjacent and beyond are # numerically equivalent in `value` graph %>% get_similar_nbrs( node = 10, node_attr = value) # We can also set a tolerance # for ascribing similarly by using # either the `tol_abs` or `tol_pct` # arguments (the first applies absolute # lower and upper bounds from the # value in the starting node and the # latter uses a percentage difference # to do the same); try setting `tol_abs` # with a fairly large range to # determine if several nodes can be # selected graph %>% get_similar_nbrs( node = 10, node_attr = value, tol_abs = c(1, 1)) # That resulted in a fairly large # set of 4 neigboring nodes; for # sake of example, setting the range # to be very large will effectively # return all nodes in the graph # except for the starting node graph %>% get_similar_nbrs( node = 10, node_attr = value, tol_abs = c(10, 10)) %>% length()
# Getting similar neighbors can # be done through numerical comparisons; # start by creating a random, directed # graph with 18 nodes and 22 edges # using the `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 18, m = 25, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(0)) # Starting with node `10`, we # can test whether any nodes # adjacent and beyond are # numerically equivalent in `value` graph %>% get_similar_nbrs( node = 10, node_attr = value) # We can also set a tolerance # for ascribing similarly by using # either the `tol_abs` or `tol_pct` # arguments (the first applies absolute # lower and upper bounds from the # value in the starting node and the # latter uses a percentage difference # to do the same); try setting `tol_abs` # with a fairly large range to # determine if several nodes can be # selected graph %>% get_similar_nbrs( node = 10, node_attr = value, tol_abs = c(1, 1)) # That resulted in a fairly large # set of 4 neigboring nodes; for # sake of example, setting the range # to be very large will effectively # return all nodes in the graph # except for the starting node graph %>% get_similar_nbrs( node = 10, node_attr = value, tol_abs = c(10, 10)) %>% length()
Provides a vector of node IDs for all nodes that have a connection from the given node.
get_successors(graph, node)
get_successors(graph, node)
graph |
A graph object of class |
node |
A node ID for the selected node. |
A vector of node ID values.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a node data frame (ndf) ndf <- create_node_df(n = 26) # Create an edge data # frame (edf) edf <- create_edge_df( from = sample( 1:26, replace = TRUE), to = sample( 1:26, replace = TRUE)) # From the ndf and edf, # create a graph object graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get sucessors for node # `4` in the graph graph %>% get_successors( node = 4) # If there are no successors, # NA is returned graph %>% get_successors( node = 1)
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a node data frame (ndf) ndf <- create_node_df(n = 26) # Create an edge data # frame (edf) edf <- create_edge_df( from = sample( 1:26, replace = TRUE), to = sample( 1:26, replace = TRUE)) # From the ndf and edf, # create a graph object graph <- create_graph( nodes_df = ndf, edges_df = edf) # Get sucessors for node # `4` in the graph graph %>% get_successors( node = 4) # If there are no successors, # NA is returned graph %>% get_successors( node = 1)
Determine which nodes in a graph belong to different weakly connected components (i.e., distinct sets of nodes with traversable paths to and from each node in the set).
get_w_connected_cmpts(graph)
get_w_connected_cmpts(graph)
graph |
A graph object of class |
A data frame with nodes and their membership in different weakly connected components.
# Create a graph with 2 cycles graph <- create_graph() %>% add_cycle(n = 4) %>% add_cycle(n = 3) # Check if the graph is connected graph %>% is_graph_connected() # Get the graph's weakly-connected # components graph %>% get_w_connected_cmpts()
# Create a graph with 2 cycles graph <- create_graph() %>% add_cycle(n = 4) %>% add_cycle(n = 3) # Check if the graph is connected graph %>% is_graph_connected() # Get the graph's weakly-connected # components graph %>% get_w_connected_cmpts()
Make diagrams in R using viz.js
with infrastructure provided by
htmlwidgets.
grViz( diagram = "", engine = "dot", allow_subst = TRUE, options = NULL, width = NULL, height = NULL, envir = parent.frame() )
grViz( diagram = "", engine = "dot", allow_subst = TRUE, options = NULL, width = NULL, height = NULL, envir = parent.frame() )
diagram |
Spec for a diagram as either text, filename string, or file connection. |
engine |
String for the Graphviz layout engine; can be |
allow_subst |
A boolean that enables/disables substitution functionality. |
options |
Parameters supplied to the htmlwidgets framework. |
width |
An optional parameter for specifying the width of the resulting graphic in pixels. |
height |
An optional parameter for specifying the height of the resulting graphic in pixels. |
envir |
The environment in which substitution functionality takes place. |
An object of class htmlwidget
that will intelligently print itself
into HTML in a variety of contexts including the R console, within R
Markdown documents, and within Shiny output bindings.
Widget output function for use in Shiny
grVizOutput(outputId, width = "100%", height = "400px")
grVizOutput(outputId, width = "100%", height = "400px")
outputId |
Output variable to read from. |
width |
A valid CSS unit for the width or a number, which will be
coerced to a string and have |
height |
A valid CSS unit for the height or a number, which will be
coerced to a string and have |
Import a variety of graphs from different graph formats and create a graph object.
import_graph( graph_file, file_type = NULL, edges_extra_attr_names = NULL, edges_extra_attr_coltypes = NULL, graph_name = NULL, attr_theme = "default", write_backups = FALSE, display_msgs = FALSE )
import_graph( graph_file, file_type = NULL, edges_extra_attr_names = NULL, edges_extra_attr_coltypes = NULL, graph_name = NULL, attr_theme = "default", write_backups = FALSE, display_msgs = FALSE )
graph_file |
A connection to a graph file. When provided as a path to a
file, it will read the file from disk. Files starting with |
file_type |
The type of file to be imported. Options are: |
edges_extra_attr_names |
For |
edges_extra_attr_coltypes |
For |
graph_name |
An optional string for labeling the graph object. |
attr_theme |
The theme (i.e., collection of |
write_backups |
An option to write incremental backups of changing graph
states to disk. If |
display_msgs |
An option to display messages primarily concerned with
changes in graph selections. By default, this is |
A graph object of class dgr_graph
.
## Not run: # Import a GML graph file gml_graph <- import_graph( system.file( "extdata/karate.gml", package = "DiagrammeR")) # Get a count of the graph's nodes gml_graph %>% count_nodes() # Get a count of the graph's edges gml_graph %>% count_edges() ## End(Not run)
## Not run: # Import a GML graph file gml_graph <- import_graph( system.file( "extdata/karate.gml", package = "DiagrammeR")) # Get a count of the graph's nodes gml_graph %>% count_nodes() # Get a count of the graph's edges gml_graph %>% count_edges() ## End(Not run)
Modify the selection of nodes or edges within a graph object such that all nodes or edges previously not selected will now be selected and vice versa.
invert_selection(graph)
invert_selection(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "standard") # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to") # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Select nodes with ID # values `1` and `3` graph <- graph %>% select_nodes( nodes = c(1, 3)) # Verify that a node # selection has been made graph %>% get_selection() # Invert the selection graph <- graph %>% invert_selection() # Verify that the node # selection has been changed graph %>% get_selection()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "standard") # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to") # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Select nodes with ID # values `1` and `3` graph <- graph %>% select_nodes( nodes = c(1, 3)) # Verify that a node # selection has been made graph %>% get_selection() # Invert the selection graph <- graph %>% invert_selection() # Verify that the node # selection has been changed graph %>% get_selection()
Determines whether an edge definition is a loop edge.
is_edge_loop(graph, edge)
is_edge_loop(graph, edge)
graph |
A graph object of class |
edge |
A numeric edge ID value. |
A logical value.
# Create a graph that has multiple # loop edges graph <- create_graph() %>% add_path(n = 4) %>% add_edge( from = 1, to = 1) %>% add_edge( from = 3, to = 3) # Get the graph's internal # edge data frame graph %>% get_edge_df() # Determine if edge `4` is # a loop edge graph %>% is_edge_loop(edge = 4) # Determine if edge `2` is # a loop edge graph %>% is_edge_loop(edge = 2)
# Create a graph that has multiple # loop edges graph <- create_graph() %>% add_path(n = 4) %>% add_edge( from = 1, to = 1) %>% add_edge( from = 3, to = 3) # Get the graph's internal # edge data frame graph %>% get_edge_df() # Determine if edge `4` is # a loop edge graph %>% is_edge_loop(edge = 4) # Determine if edge `2` is # a loop edge graph %>% is_edge_loop(edge = 2)
Determines whether an edge definition has multiple edge IDs associated with the same node pair.
is_edge_multiple(graph, edge)
is_edge_multiple(graph, edge)
graph |
A graph object of class |
edge |
A numeric edge ID value. |
A logical value.
# Create a graph that has multiple # edges across some node pairs graph <- create_graph() %>% add_path(n = 4) %>% add_edge( from = 1, to = 2) %>% add_edge( from = 3, to = 4) # Get the graph's internal # edge data frame graph %>% get_edge_df() # Determine if edge `1` is # a multiple edge graph %>% is_edge_multiple(edge = 1) # Determine if edge `2` is # a multiple edge graph %>% is_edge_multiple(edge = 2)
# Create a graph that has multiple # edges across some node pairs graph <- create_graph() %>% add_path(n = 4) %>% add_edge( from = 1, to = 2) %>% add_edge( from = 3, to = 4) # Get the graph's internal # edge data frame graph %>% get_edge_df() # Determine if edge `1` is # a multiple edge graph %>% is_edge_multiple(edge = 1) # Determine if edge `2` is # a multiple edge graph %>% is_edge_multiple(edge = 2)
Determines whether an edge definition has a mutual analogue with the same node pair.
is_edge_mutual(graph, edge)
is_edge_mutual(graph, edge)
graph |
A graph object of class |
edge |
A numeric edge ID value. |
A logical value.
# Create a graph that has mutual # edges across some node pairs graph <- create_graph() %>% add_path(n = 4) %>% add_edge( from = 4, to = 3) %>% add_edge( from = 2, to = 1) # Get the graph's internal # edge data frame graph %>% get_edge_df() # Determine if edge `1` has # a mutual edge graph %>% is_edge_mutual(edge = 1) # Determine if edge `2` has # a mutual edge graph %>% is_edge_mutual(edge = 2)
# Create a graph that has mutual # edges across some node pairs graph <- create_graph() %>% add_path(n = 4) %>% add_edge( from = 4, to = 3) %>% add_edge( from = 2, to = 1) # Get the graph's internal # edge data frame graph %>% get_edge_df() # Determine if edge `1` has # a mutual edge graph %>% is_edge_mutual(edge = 1) # Determine if edge `2` has # a mutual edge graph %>% is_edge_mutual(edge = 2)
From a graph object of class dgr_graph
, determine whether an edge (defined
by a pair of node IDs or node label values) is present.
is_edge_present(graph, edge = NULL, from = NULL, to = NULL)
is_edge_present(graph, edge = NULL, from = NULL, to = NULL)
graph |
A graph object of class |
edge |
An edge ID value to test for presence in the graph. If a single,
numeric value is provided then values for |
from |
A node ID from which the edge is outgoing, or, the label
associated with the node. For an undirected graph, the value in |
to |
A node ID to which the edge is incoming, or, the label associated
with the node. For an undirected graph, the value in |
A logical value.
# Create a simple graph with # a path of four nodes graph <- create_graph() %>% add_path( n = 4, type = "path", label = c("one", "two", "three", "four")) # Find out if edge ID `3` # is present in the graph graph %>% is_edge_present(edge = 3) # Determine if there are any edges # with the definition `1` -> `2` graph %>% is_edge_present( from = 1, to = 2) # Determine if there are any edges # with the definition `4` -> `5` graph %>% is_edge_present( from = 4, to = 5) # Determine whether an edge, # defined by its labels as # `two` -> `three`, exists in # the graph graph %>% is_edge_present( from = "two", to = "three") # Set the graph as undirected # and determine whether an # edge between nodes with labels # `three` and `two` exists graph %>% set_graph_undirected() %>% is_edge_present( from = "three", to = "two")
# Create a simple graph with # a path of four nodes graph <- create_graph() %>% add_path( n = 4, type = "path", label = c("one", "two", "three", "four")) # Find out if edge ID `3` # is present in the graph graph %>% is_edge_present(edge = 3) # Determine if there are any edges # with the definition `1` -> `2` graph %>% is_edge_present( from = 1, to = 2) # Determine if there are any edges # with the definition `4` -> `5` graph %>% is_edge_present( from = 4, to = 5) # Determine whether an edge, # defined by its labels as # `two` -> `three`, exists in # the graph graph %>% is_edge_present( from = "two", to = "three") # Set the graph as undirected # and determine whether an # edge between nodes with labels # `three` and `two` exists graph %>% set_graph_undirected() %>% is_edge_present( from = "three", to = "two")
Determines whether a graph is a connected graph.
is_graph_connected(graph)
is_graph_connected(graph)
graph |
A graph object of class |
A logical value.
# Create a random graph using the # `add_gnm_graph()` function; this # graph is not connected create_graph() %>% add_gnm_graph( n = 15, m = 10, set_seed = 23) %>% is_graph_connected() # Create another random graph; # this graph is connected create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) %>% is_graph_connected()
# Create a random graph using the # `add_gnm_graph()` function; this # graph is not connected create_graph() %>% add_gnm_graph( n = 15, m = 10, set_seed = 23) %>% is_graph_connected() # Create another random graph; # this graph is connected create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) %>% is_graph_connected()
Provides a logical value on whether the graph is a directed acyclic graph (DAG). The conditions for a graph that is a DAG are that it should be a directed graph and it should not contain any cycles.
is_graph_dag(graph)
is_graph_dag(graph)
graph |
A graph object of class |
A logical value.
# Create a directed graph containing # only a balanced tree graph_tree <- create_graph() %>% add_balanced_tree( k = 2, h = 3) # Determine whether this graph # is a DAG graph_tree %>% is_graph_dag() # Create a directed graph containing # a single cycle graph_cycle <- create_graph() %>% add_cycle(n = 5) # Determine whether this graph # is a DAG graph_cycle %>% is_graph_dag() # Create an undirected graph # containing a balanced tree graph_tree_undirected <- create_graph( directed = FALSE) %>% add_balanced_tree( k = 2, h = 2) # Determine whether this graph # is a DAG graph_tree_undirected %>% is_graph_dag()
# Create a directed graph containing # only a balanced tree graph_tree <- create_graph() %>% add_balanced_tree( k = 2, h = 3) # Determine whether this graph # is a DAG graph_tree %>% is_graph_dag() # Create a directed graph containing # a single cycle graph_cycle <- create_graph() %>% add_cycle(n = 5) # Determine whether this graph # is a DAG graph_cycle %>% is_graph_dag() # Create an undirected graph # containing a balanced tree graph_tree_undirected <- create_graph( directed = FALSE) %>% add_balanced_tree( k = 2, h = 2) # Determine whether this graph # is a DAG graph_tree_undirected %>% is_graph_dag()
Determines whether a graph is set to be directed or not and returns a logical value to that effect.
is_graph_directed(graph)
is_graph_directed(graph)
graph |
A graph object of class |
A logical value.
# Create an empty graph; by default, # new graphs made by `create_graph()` # are directed graph <- create_graph() # Determine whether the graph # is directed graph %>% is_graph_directed() # Use the `set_graph_undirected()` # function and check again whether # the graph is directed graph %>% set_graph_undirected() %>% is_graph_directed()
# Create an empty graph; by default, # new graphs made by `create_graph()` # are directed graph <- create_graph() # Determine whether the graph # is directed graph %>% is_graph_directed() # Use the `set_graph_undirected()` # function and check again whether # the graph is directed graph %>% set_graph_undirected() %>% is_graph_directed()
Provides a logical value on whether the graph is empty (i.e., contains no nodes).
is_graph_empty(graph)
is_graph_empty(graph)
graph |
A graph object of class |
A logical value.
# Create an empty graph graph <- create_graph() # Determine whether the graph is empty graph %>% is_graph_empty() # Create a non-empty graph graph <- create_graph() %>% add_n_nodes(n = 3) # Determine whether this graph is empty graph %>% is_graph_empty()
# Create an empty graph graph <- create_graph() # Determine whether the graph is empty graph %>% is_graph_empty() # Create a non-empty graph graph <- create_graph() %>% add_n_nodes(n = 3) # Determine whether this graph is empty graph %>% is_graph_empty()
Determine whether the graph is a simple graph. A simple graph is one that does not contain any loops nor any multiple edges.
is_graph_simple(graph)
is_graph_simple(graph)
graph |
A graph object of class |
A logical value.
# Create a graph with 2 cycles graph <- create_graph() %>% add_cycle(n = 4) %>% add_cycle(n = 3) # Check if the graph is simple graph %>% is_graph_simple()
# Create a graph with 2 cycles graph <- create_graph() %>% add_cycle(n = 4) %>% add_cycle(n = 3) # Check if the graph is simple graph %>% is_graph_simple()
Determines whether a graph is set as undirected or not and returns a logical value to that effect.
is_graph_undirected(graph)
is_graph_undirected(graph)
graph |
A graph object of class |
A logical value.
# Create an empty graph; by # default, new graphs made # by `create_graph()` are # directed graph, so, use # `directed = FALSE` to create # an undirected graph graph <- create_graph( directed = FALSE) # Determine whether the # graph is undirected graph %>% is_graph_undirected() # Use the `set_graph_directed()` # function and check again # as to whether the graph is # undirected graph %>% set_graph_directed() %>% is_graph_undirected()
# Create an empty graph; by # default, new graphs made # by `create_graph()` are # directed graph, so, use # `directed = FALSE` to create # an undirected graph graph <- create_graph( directed = FALSE) # Determine whether the # graph is undirected graph %>% is_graph_undirected() # Use the `set_graph_directed()` # function and check again # as to whether the graph is # undirected graph %>% set_graph_directed() %>% is_graph_undirected()
Provides a logical value on whether the graph is weighted. A graph is
considered to be weighted when it contains edges that all have a edge
weight
attribute with numerical values assigned for all edges.
is_graph_weighted(graph)
is_graph_weighted(graph)
graph |
A graph object of class |
A logical value.
# Create a graph where the edges have # a `weight` attribute graph <- create_graph() %>% add_cycle(n = 5) %>% select_edges() %>% set_edge_attrs_ws( edge_attr = weight, value = c(3, 5, 2, 9, 6)) %>% clear_selection() # Determine whether the graph # is a weighted graph graph %>% is_graph_weighted() # Create graph where the edges do # not have a `weight` attribute graph <- create_graph() %>% add_cycle(n = 5) # Determine whether this graph # is weighted graph %>% is_graph_weighted()
# Create a graph where the edges have # a `weight` attribute graph <- create_graph() %>% add_cycle(n = 5) %>% select_edges() %>% set_edge_attrs_ws( edge_attr = weight, value = c(3, 5, 2, 9, 6)) %>% clear_selection() # Determine whether the graph # is a weighted graph graph %>% is_graph_weighted() # Create graph where the edges do # not have a `weight` attribute graph <- create_graph() %>% add_cycle(n = 5) # Determine whether this graph # is weighted graph %>% is_graph_weighted()
From a graph object of class dgr_graph
, determine whether a specified node
is present.
is_node_present(graph, node)
is_node_present(graph, node)
graph |
A graph object of class |
node |
Either a node ID value or a node label to test for presence in the graph. |
A logical value.
# Create a simple graph with # a path of four nodes graph <- create_graph() %>% add_path( n = 4, type = "path", label = c( "one", "two", "three", "four")) # Determine if there is a node # with ID `1` in the graph graph %>% is_node_present(node = 1) # Determine if there is a node # with ID `5` in the graph graph %>% is_node_present(node = 5) # Determine if there is a node # with label `two` in the graph graph %>% is_node_present(node = "two")
# Create a simple graph with # a path of four nodes graph <- create_graph() %>% add_path( n = 4, type = "path", label = c( "one", "two", "three", "four")) # Determine if there is a node # with ID `1` in the graph graph %>% is_node_present(node = 1) # Determine if there is a node # with ID `5` in the graph graph %>% is_node_present(node = 5) # Determine if there is a node # with label `two` in the graph graph %>% is_node_present(node = "two")
Provides a logical value on whether the graph is property graph (i.e., all
nodes have an assigned type
value and all edges have an assigned rel
value).
is_property_graph(graph)
is_property_graph(graph)
graph |
A graph object of class |
A logical value.
# Create a graph with 2 nodes # (with `type` values) and a # single edge (with a `rel`) simple_property_graph <- create_graph() %>% add_node( type = "a", label = "first") %>% add_node( type = "b", label = "second") %>% add_edge( from = "first", to = "second", rel = "rel_1") # This is indeed a property graph # but to confirm this, use the # `is_property_graph()` function is_property_graph(simple_property_graph) # If a `type` attribute is # removed, then this graph will # no longer be a property graph simple_property_graph %>% set_node_attrs( node_attr = type, values = NA, nodes = 1) %>% is_property_graph() # An empty graph will return FALSE create_graph() %>% is_property_graph()
# Create a graph with 2 nodes # (with `type` values) and a # single edge (with a `rel`) simple_property_graph <- create_graph() %>% add_node( type = "a", label = "first") %>% add_node( type = "b", label = "second") %>% add_edge( from = "first", to = "second", rel = "rel_1") # This is indeed a property graph # but to confirm this, use the # `is_property_graph()` function is_property_graph(simple_property_graph) # If a `type` attribute is # removed, then this graph will # no longer be a property graph simple_property_graph %>% set_node_attrs( node_attr = type, values = NA, nodes = 1) %>% is_property_graph() # An empty graph will return FALSE create_graph() %>% is_property_graph()
Join new edge attribute values in a left join using a data frame. The use of a left join in this function allows for no possibility that edges in the graph might be removed after the join.
join_edge_attrs(graph, df, by_graph = NULL, by_df = NULL)
join_edge_attrs(graph, df, by_graph = NULL, by_df = NULL)
graph |
A graph object of class |
df |
The data frame to use for joining. |
by_graph |
Optional specification of the column in the graph's internal
edge data frame for the left join. If both |
by_df |
Optional specification of the column in |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes(n = 5) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5") # Create a data frame with node ID values # representing the graph edges (with `from` and `to` # columns), and, a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = rnorm(5, 5)) # Join the values in the data frame to the # graph's edges; this works as a left join using # identically-named columns in the graph and the df # (in this case `from` and `to` are common to both) graph <- graph %>% join_edge_attrs( df = df) # Get the graph's internal edf to show that the # join has been made graph %>% get_edge_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes(n = 5) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5") # Create a data frame with node ID values # representing the graph edges (with `from` and `to` # columns), and, a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = rnorm(5, 5)) # Join the values in the data frame to the # graph's edges; this works as a left join using # identically-named columns in the graph and the df # (in this case `from` and `to` are common to both) graph <- graph %>% join_edge_attrs( df = df) # Get the graph's internal edf to show that the # join has been made graph %>% get_edge_df()
Join new node attribute values in a left join using a data frame. The use of a left join in this function allows for no possibility that nodes in the graph might be removed after the join.
join_node_attrs(graph, df, by_graph = NULL, by_df = NULL)
join_node_attrs(graph, df, by_graph = NULL, by_df = NULL)
graph |
A graph object of class |
df |
The data frame to use for joining. |
by_graph |
Optional specification of the column in the graph's internal
node data frame for the left join. If both |
by_df |
Optional specification of the column in |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes(n = 5) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5") # Create a data frame with node ID values and a # set of numeric values df <- data.frame( values = round(rnorm(6, 5), 2), id = 1:6) # Join the values in the data frame to the # graph's nodes; this works as a left join using # identically-named columns in the graph and the df # (in this case the `id` column is common to both) graph <- graph %>% join_node_attrs( df = df) # Get the graph's internal ndf to show that the # join has been made graph %>% get_node_df() # Get betweenness values for each node and # add them as a node attribute (Note the # common column name `id` in the different # tables results in a natural join) graph <- graph %>% join_node_attrs( df = get_betweenness(.)) # Get the graph's internal ndf to show that # this join has been made graph %>% get_node_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes(n = 5) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5") # Create a data frame with node ID values and a # set of numeric values df <- data.frame( values = round(rnorm(6, 5), 2), id = 1:6) # Join the values in the data frame to the # graph's nodes; this works as a left join using # identically-named columns in the graph and the df # (in this case the `id` column is common to both) graph <- graph %>% join_node_attrs( df = df) # Get the graph's internal ndf to show that the # join has been made graph %>% get_node_df() # Get betweenness values for each node and # add them as a node attribute (Note the # common column name `id` in the different # tables results in a natural join) graph <- graph %>% join_node_attrs( df = get_betweenness(.)) # Get the graph's internal ndf to show that # this join has been made graph %>% get_node_df()
Layout one or several groups of nodes using a text-based schematic. The option is available to apply sorting to each of the groups.
layout_nodes_w_string( graph, layout, nodes, sort = NULL, width = 8, height = 8, ll = c(0, 0) )
layout_nodes_w_string( graph, layout, nodes, sort = NULL, width = 8, height = 8, ll = c(0, 0) )
graph |
A graph object of class |
layout |
A layout character string that provides a schematic for the
layout. This consists of a rectangular collection of |
nodes |
A named vector of the form: |
sort |
An optional sorting method to apply to the collection of nodes
before assigning positional information. Like |
width |
The width of the |
height |
The height of the |
ll |
A vector describing the the lower-left coordinates of the |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with unique labels and # several node `type` groupings graph <- create_graph() %>% add_node(type = "a", label = "a") %>% add_node(type = "a", label = "b") %>% add_node(type = "b", label = "c") %>% add_node(type = "b", label = "d") %>% add_node(type = "b", label = "e") %>% add_node(type = "c", label = "f") %>% add_node(type = "c", label = "g") # Define a 'layout' for groups of nodes # using a text string (dashes are empty # grid cells, numbers--representing # ad-hoc groupings--correspond to # individual nodes); here, define a layout # with 3 groups of nodes layout <- " 1-------- 1-------- ---222--- --------3 --------3 " # Use the `layout` along with what nodes # the numbers correspond to in the graph # with the `nodes` named vectors; the # optional `sort` vector describes how # we should sort the collection of node # before adding position information graph <- graph %>% layout_nodes_w_string( layout = layout, nodes = c("1" = "type:a", "2" = "type:b", "3" = "type:c"), sort = c("1" = "label:asc", "2" = "label:desc", "3" = "label:desc")) # Show the graph's node data frame # to confirm that `x` and `y` values # were added to each of the nodes graph %>% get_node_df()
# Create a graph with unique labels and # several node `type` groupings graph <- create_graph() %>% add_node(type = "a", label = "a") %>% add_node(type = "a", label = "b") %>% add_node(type = "b", label = "c") %>% add_node(type = "b", label = "d") %>% add_node(type = "b", label = "e") %>% add_node(type = "c", label = "f") %>% add_node(type = "c", label = "g") # Define a 'layout' for groups of nodes # using a text string (dashes are empty # grid cells, numbers--representing # ad-hoc groupings--correspond to # individual nodes); here, define a layout # with 3 groups of nodes layout <- " 1-------- 1-------- ---222--- --------3 --------3 " # Use the `layout` along with what nodes # the numbers correspond to in the graph # with the `nodes` named vectors; the # optional `sort` vector describes how # we should sort the collection of node # before adding position information graph <- graph %>% layout_nodes_w_string( layout = layout, nodes = c("1" = "type:a", "2" = "type:b", "3" = "type:c"), sort = c("1" = "label:asc", "2" = "label:desc", "3" = "label:desc")) # Show the graph's node data frame # to confirm that `x` and `y` values # were added to each of the nodes graph %>% get_node_df()
Make diagrams in R using mermaid.js with infrastructure provided by htmlwidgets.
mermaid(diagram = "", ..., width = NULL, height = NULL)
mermaid(diagram = "", ..., width = NULL, height = NULL)
diagram |
Diagram in mermaid markdown-like language or file (as a
connection or file name) containing a diagram specification. If no diagram
is provided |
... |
Other arguments and parameters you would like to send to JavaScript. |
width |
The width of the resulting graphic in pixels. |
height |
The height of the resulting graphic in pixels. |
An object of class htmlwidget
that will intelligently print itself
into HTML in a variety of contexts including the R console, within R
Markdown documents, and within Shiny output bindings.
# Create a simple graph running left to right (note # that the whitespace is not important) # DiagrammeR(" # graph LR # A-->B # A-->C # C-->E # B-->D # C-->D # D-->F # E-->F # ") # Create the equivalent graph but have it running # from top to bottom # DiagrammeR(" # graph TB # A-->B # A-->C # C-->E # B-->D # C-->D # D-->F # E-->F # ") # Create a graph with different node shapes and # provide fill styles for each node # DiagrammeR("graph LR;A(Rounded)-->B[Squared];B-->C{A Decision}; # C-->D[Square One];C-->E[Square Two]; # style A fill:#E5E25F; style B fill:#87AB51; style C fill:#3C8937; # style D fill:#23772C; style E fill:#B6E6E6;" # ) # Load in the 'mtcars' dataset # data(mtcars) # connections <- sapply( # 1:ncol(mtcars) # ,function(i) { # paste0( # i # ,"(",colnames(mtcars)[i],")---" # ,i,"-stats(" # ,paste0( # names(summary(mtcars[,i])) # ,": " # ,unname(summary(mtcars[,i])) # ,collapse="<br/>" # ) # ,")" # ) # } # ) # Create a diagram using the 'connections' object # DiagrammeR( # paste0( # "graph TD;", "\n", # paste(connections, collapse = "\n"),"\n", # "classDef column fill:#0001CC, stroke:#0D3FF3, stroke-width:1px;" ,"\n", # "class ", paste0(1:length(connections), collapse = ","), " column;" # ) # ) # Also with `DiagrammeR()`, you can use tags # from `htmltools` (just make sure to use # `class = "mermaid"`) library(htmltools) # diagramSpec = " # graph LR; # id1(Start)-->id2(Stop); # style id1 fill:#f9f,stroke:#333,stroke-width:4px; # style id2 fill:#ccf,stroke:#f66,stroke-width:2px,stroke-dasharray: 5, 5; # " # html_print(tagList( # tags$h1("R + mermaid.js = Something Special") # ,tags$pre(diagramSpec) # ,tags$div(class="mermaid", diagramSpec) # ,DiagrammeR() # )) # Create a sequence diagram # DiagrammeR(" # sequenceDiagram; # customer->>ticket seller: ask for a ticket; # ticket seller->>database: seats; # alt tickets available # database->>ticket seller: ok; # ticket seller->>customer: confirm; # customer->>ticket seller: ok; # ticket seller->>database: book a seat; # ticket seller->>printer: print a ticket; # else sold out # database->>ticket seller: none left; # ticket seller->>customer: sorry; # end # ")
# Create a simple graph running left to right (note # that the whitespace is not important) # DiagrammeR(" # graph LR # A-->B # A-->C # C-->E # B-->D # C-->D # D-->F # E-->F # ") # Create the equivalent graph but have it running # from top to bottom # DiagrammeR(" # graph TB # A-->B # A-->C # C-->E # B-->D # C-->D # D-->F # E-->F # ") # Create a graph with different node shapes and # provide fill styles for each node # DiagrammeR("graph LR;A(Rounded)-->B[Squared];B-->C{A Decision}; # C-->D[Square One];C-->E[Square Two]; # style A fill:#E5E25F; style B fill:#87AB51; style C fill:#3C8937; # style D fill:#23772C; style E fill:#B6E6E6;" # ) # Load in the 'mtcars' dataset # data(mtcars) # connections <- sapply( # 1:ncol(mtcars) # ,function(i) { # paste0( # i # ,"(",colnames(mtcars)[i],")---" # ,i,"-stats(" # ,paste0( # names(summary(mtcars[,i])) # ,": " # ,unname(summary(mtcars[,i])) # ,collapse="<br/>" # ) # ,")" # ) # } # ) # Create a diagram using the 'connections' object # DiagrammeR( # paste0( # "graph TD;", "\n", # paste(connections, collapse = "\n"),"\n", # "classDef column fill:#0001CC, stroke:#0D3FF3, stroke-width:1px;" ,"\n", # "class ", paste0(1:length(connections), collapse = ","), " column;" # ) # ) # Also with `DiagrammeR()`, you can use tags # from `htmltools` (just make sure to use # `class = "mermaid"`) library(htmltools) # diagramSpec = " # graph LR; # id1(Start)-->id2(Stop); # style id1 fill:#f9f,stroke:#333,stroke-width:4px; # style id2 fill:#ccf,stroke:#f66,stroke-width:2px,stroke-dasharray: 5, 5; # " # html_print(tagList( # tags$h1("R + mermaid.js = Something Special") # ,tags$pre(diagramSpec) # ,tags$div(class="mermaid", diagramSpec) # ,DiagrammeR() # )) # Create a sequence diagram # DiagrammeR(" # sequenceDiagram; # customer->>ticket seller: ask for a ticket; # ticket seller->>database: seats; # alt tickets available # database->>ticket seller: ok; # ticket seller->>customer: confirm; # customer->>ticket seller: ok; # ticket seller->>database: book a seat; # ticket seller->>printer: print a ticket; # else sold out # database->>ticket seller: none left; # ticket seller->>customer: sorry; # end # ")
Within a graph's internal edge data frame (edf), mutate numeric edge attribute values using one or more expressions.
mutate_edge_attrs(graph, ...)
mutate_edge_attrs(graph, ...)
graph |
A graph object of class |
... |
Expressions used for the mutation of edge attributes. LHS of each expression is either an existing or new edge attribute name. The RHS can consist of any valid R code that uses edge attributes as variables. Expressions are evaluated in the order provided, so, edge attributes created or modified are ready to use in subsequent expressions. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with 3 edges graph <- create_graph() %>% add_path(n = 4) %>% set_edge_attrs( edge_attr = width, values = c(3.4, 2.3, 7.2)) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Mutate the `width` edge # attribute, dividing each # value by 2 graph <- graph %>% mutate_edge_attrs( width = width / 2) # Get the graph's internal # edf to show that the edge # attribute `width` had its # values changed graph %>% get_edge_df() # Create a new edge attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% mutate_edge_attrs( length = (log(width) + 2) %>% round(2)) # Get the graph's internal edf # to show that the edge attribute # values had been mutated graph %>% get_edge_df() # Create a new edge attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_edge_attrs( area = width * length) # Get the graph's internal edf # to show that the edge attribute # values had been multiplied # together (with new attr `area`) graph %>% get_edge_df()
# Create a graph with 3 edges graph <- create_graph() %>% add_path(n = 4) %>% set_edge_attrs( edge_attr = width, values = c(3.4, 2.3, 7.2)) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Mutate the `width` edge # attribute, dividing each # value by 2 graph <- graph %>% mutate_edge_attrs( width = width / 2) # Get the graph's internal # edf to show that the edge # attribute `width` had its # values changed graph %>% get_edge_df() # Create a new edge attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% mutate_edge_attrs( length = (log(width) + 2) %>% round(2)) # Get the graph's internal edf # to show that the edge attribute # values had been mutated graph %>% get_edge_df() # Create a new edge attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_edge_attrs( area = width * length) # Get the graph's internal edf # to show that the edge attribute # values had been multiplied # together (with new attr `area`) graph %>% get_edge_df()
Within a graph's internal edge data frame (edf), mutate edge attribute values only for edges in a selection by using one or more expressions.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
mutate_edge_attrs_ws(graph, ...)
mutate_edge_attrs_ws(graph, ...)
graph |
A graph object of class |
... |
Expressions used for the mutation of edge attributes. LHS of each expression is either an existing or new edge attribute name. The RHS can consist of any valid R code that uses edge attributes as variables. Expressions are evaluated in the order provided, so, edge attributes created or modified are ready to use in subsequent expressions. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with 3 edges # and then select edge `1` graph <- create_graph() %>% add_path(n = 4) %>% set_edge_attrs( edge_attr = width, values = c(3.4, 2.3, 7.2)) %>% select_edges(edges = 1) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Mutate the `width` edge # attribute for the edges # only in the active selection # of edges (edge `1`); here, # we divide each value in the # selection by 2 graph <- graph %>% mutate_edge_attrs_ws( width = width / 2) # Get the graph's internal # edf to show that the edge # attribute `width` had its # values changed graph %>% get_edge_df() # Create a new edge attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% clear_selection() %>% select_edges(edges = 2:3) %>% mutate_edge_attrs_ws( length = (log(width) + 2) %>% round(2)) # Get the graph's internal edf # to show that the edge attribute # values had been mutated only # for edges `2` and `3` (since # edge `1` is excluded, an NA # value is applied) graph %>% get_edge_df() # Create a new edge attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_edge_attrs_ws( area = width * length) # Get the graph's internal edf # to show that the edge attribute # values had been multiplied # together (with new attr `area`) # for nodes `2` and `3` graph %>% get_edge_df() # We can invert the selection # and mutate edge `1` several # times to get an `area` value # for that edge graph <- graph %>% invert_selection() %>% mutate_edge_attrs_ws( length = (log(width) + 5) %>% round(2), area = width * length) # Get the graph's internal edf # to show that the 2 mutations # occurred for edge `1`, yielding # non-NA values for its edge # attributes without changing # those of the other edges graph %>% get_edge_df()
# Create a graph with 3 edges # and then select edge `1` graph <- create_graph() %>% add_path(n = 4) %>% set_edge_attrs( edge_attr = width, values = c(3.4, 2.3, 7.2)) %>% select_edges(edges = 1) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Mutate the `width` edge # attribute for the edges # only in the active selection # of edges (edge `1`); here, # we divide each value in the # selection by 2 graph <- graph %>% mutate_edge_attrs_ws( width = width / 2) # Get the graph's internal # edf to show that the edge # attribute `width` had its # values changed graph %>% get_edge_df() # Create a new edge attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% clear_selection() %>% select_edges(edges = 2:3) %>% mutate_edge_attrs_ws( length = (log(width) + 2) %>% round(2)) # Get the graph's internal edf # to show that the edge attribute # values had been mutated only # for edges `2` and `3` (since # edge `1` is excluded, an NA # value is applied) graph %>% get_edge_df() # Create a new edge attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_edge_attrs_ws( area = width * length) # Get the graph's internal edf # to show that the edge attribute # values had been multiplied # together (with new attr `area`) # for nodes `2` and `3` graph %>% get_edge_df() # We can invert the selection # and mutate edge `1` several # times to get an `area` value # for that edge graph <- graph %>% invert_selection() %>% mutate_edge_attrs_ws( length = (log(width) + 5) %>% round(2), area = width * length) # Get the graph's internal edf # to show that the 2 mutations # occurred for edge `1`, yielding # non-NA values for its edge # attributes without changing # those of the other edges graph %>% get_edge_df()
Within a graph's internal node data frame (ndf), mutate numeric node attribute values using one or more expressions.
mutate_node_attrs(graph, ...)
mutate_node_attrs(graph, ...)
graph |
A graph object of class |
... |
Expressions used for the mutation of node attributes. LHS of each expression is either an existing or new node attribute name. The RHS can consist of any valid R code that uses node attributes as variables. Expressions are evaluated in the order provided, so, node attributes created or modified are ready to use in subsequent expressions. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with 3 nodes graph <- create_graph() %>% add_path(n = 3) %>% set_node_attrs( node_attr = width, values = c(1.4, 0.3, 1.1)) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Mutate the `width` node # attribute, dividing each # value by 2 graph <- graph %>% mutate_node_attrs( width = width / 2) # Get the graph's internal # ndf to show that the node # attribute `width` had its # values changed graph %>% get_node_df() # Create a new node attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% mutate_node_attrs( length = (log(width) + 2) %>% round(2)) # Get the graph's internal ndf # to show that the node attribute # values had been mutated graph %>% get_node_df() # Create a new node attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_node_attrs( area = width * length) # Get the graph's internal ndf # to show that the node attribute # values had been multiplied # together (with new attr `area`) graph %>% get_node_df()
# Create a graph with 3 nodes graph <- create_graph() %>% add_path(n = 3) %>% set_node_attrs( node_attr = width, values = c(1.4, 0.3, 1.1)) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Mutate the `width` node # attribute, dividing each # value by 2 graph <- graph %>% mutate_node_attrs( width = width / 2) # Get the graph's internal # ndf to show that the node # attribute `width` had its # values changed graph %>% get_node_df() # Create a new node attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% mutate_node_attrs( length = (log(width) + 2) %>% round(2)) # Get the graph's internal ndf # to show that the node attribute # values had been mutated graph %>% get_node_df() # Create a new node attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_node_attrs( area = width * length) # Get the graph's internal ndf # to show that the node attribute # values had been multiplied # together (with new attr `area`) graph %>% get_node_df()
Within a graph's internal node data frame (ndf), mutate node attribute values only for nodes in a selection by using one or more expressions.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
mutate_node_attrs_ws(graph, ...)
mutate_node_attrs_ws(graph, ...)
graph |
A graph object of class |
... |
Expressions used for the mutation of node attributes. LHS of each expression is either an existing or new node attribute name. The RHS can consist of any valid R code that uses node attributes as variables. Expressions are evaluated in the order provided, so, node attributes created or modified are ready to use in subsequent expressions. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a graph with 3 nodes # and then select node `1` graph <- create_graph() %>% add_path(n = 3) %>% set_node_attrs( node_attr = width, values = c(1.4, 0.3, 1.1)) %>% select_nodes(nodes = 1) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Mutate the `width` node # attribute for the nodes # only in the active selection # of nodes (node `1`); here, # we divide each value in the # selection by 2 graph <- graph %>% mutate_node_attrs_ws( width = width / 2) # Get the graph's internal # ndf to show that the node # attribute `width` was # mutated only for node `1` graph %>% get_node_df() # Create a new node attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% clear_selection() %>% select_nodes(nodes = 2:3) %>% mutate_node_attrs_ws( length = (log(width) + 2) %>% round(2)) # Get the graph's internal ndf # to show that the node attribute # values had been mutated only # for nodes `2` and `3` (since # node `1` is excluded, an NA # value is applied) graph %>% get_node_df() # Create a new node attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_node_attrs_ws( area = width * length) # Get the graph's internal ndf # to show that the node attribute # values had been multiplied # together (with new attr `area`) # for nodes `2` and `3` graph %>% get_node_df() # We can invert the selection # and mutate node `1` several # times to get an `area` value # for that node graph <- graph %>% invert_selection() %>% mutate_node_attrs_ws( length = (log(width) + 5) %>% round(2), area = width * length) # Get the graph's internal ndf # to show that the 2 mutations # occurred for node `1`, yielding # non-NA values for its node # attributes without changing # those of the other nodes graph %>% get_node_df()
# Create a graph with 3 nodes # and then select node `1` graph <- create_graph() %>% add_path(n = 3) %>% set_node_attrs( node_attr = width, values = c(1.4, 0.3, 1.1)) %>% select_nodes(nodes = 1) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Mutate the `width` node # attribute for the nodes # only in the active selection # of nodes (node `1`); here, # we divide each value in the # selection by 2 graph <- graph %>% mutate_node_attrs_ws( width = width / 2) # Get the graph's internal # ndf to show that the node # attribute `width` was # mutated only for node `1` graph %>% get_node_df() # Create a new node attribute, # called `length`, that is the # log of values in `width` plus # 2 (and, also, round all values # to 2 decimal places) graph <- graph %>% clear_selection() %>% select_nodes(nodes = 2:3) %>% mutate_node_attrs_ws( length = (log(width) + 2) %>% round(2)) # Get the graph's internal ndf # to show that the node attribute # values had been mutated only # for nodes `2` and `3` (since # node `1` is excluded, an NA # value is applied) graph %>% get_node_df() # Create a new node attribute # called `area`, which is the # product of the `width` and # `length` attributes graph <- graph %>% mutate_node_attrs_ws( area = width * length) # Get the graph's internal ndf # to show that the node attribute # values had been multiplied # together (with new attr `area`) # for nodes `2` and `3` graph %>% get_node_df() # We can invert the selection # and mutate node `1` several # times to get an `area` value # for that node graph <- graph %>% invert_selection() %>% mutate_node_attrs_ws( length = (log(width) + 5) %>% round(2), area = width * length) # Get the graph's internal ndf # to show that the 2 mutations # occurred for node `1`, yielding # non-NA values for its node # attributes without changing # those of the other nodes graph %>% get_node_df()
This helper function should be invoked to provide values for the namesake
node_aes
argument, which is present in any function where nodes are
created.
node_aes( shape = NULL, style = NULL, penwidth = NULL, color = NULL, fillcolor = NULL, image = NULL, fontname = NULL, fontsize = NULL, fontcolor = NULL, peripheries = NULL, height = NULL, width = NULL, x = NULL, y = NULL, group = NULL, tooltip = NULL, xlabel = NULL, URL = NULL, sides = NULL, orientation = NULL, skew = NULL, distortion = NULL, gradientangle = NULL, fixedsize = NULL, labelloc = NULL, margin = NULL )
node_aes( shape = NULL, style = NULL, penwidth = NULL, color = NULL, fillcolor = NULL, image = NULL, fontname = NULL, fontsize = NULL, fontcolor = NULL, peripheries = NULL, height = NULL, width = NULL, x = NULL, y = NULL, group = NULL, tooltip = NULL, xlabel = NULL, URL = NULL, sides = NULL, orientation = NULL, skew = NULL, distortion = NULL, gradientangle = NULL, fixedsize = NULL, labelloc = NULL, margin = NULL )
shape |
The shape to use for the node. Some possible |
style |
The node line style. The |
penwidth |
The thickness of the stroke line (in pt units) for the node
shape. The default value is |
color |
The color of the node's outline. Can be any of the named colors
that R knows about (obtained using the |
fillcolor |
The color with which to fill the shape of the node. Can be
any of the named colors that R knows about (obtained using the |
image |
A reference to an image location. |
fontname |
The name of the system font that will be used for any node text. |
fontsize |
The point size of the font used for any node text. |
fontcolor |
The color used for any node text. Can be any of the named
colors that R knows about (obtained using the |
peripheries |
The repeated number of node shapes (of increasing size) to draw at the node periphery. |
height |
The height of the node shape, in inches. The default value is
|
width |
The width of the node shape, in inches. The default value is
|
x |
The fixed position of the node in the x direction. Any integer-based or floating point value will be accepted. |
y |
The fixed position of the node in the y direction. Any integer-based or floating point value will be accepted. |
group |
The node group. |
tooltip |
Text for a node tooltip. |
xlabel |
External label for a node. The label will be placed outside of the node but near it. These labels are added after all nodes and edges have been placed. The labels will be placed so that they do not overlap any node or label. This means it may not be possible to place all of them. |
URL |
A URL to associate with a node. Upon rendering the plot, clicking nodes with any associated URLs will open the URL in the default browser. |
sides |
When using the shape |
orientation |
This is the angle, in degrees, that is used to rotate
nodes that have a |
skew |
A |
distortion |
A distortion factor that is used only when a |
gradientangle |
The path angle for the node color fill gradient. |
fixedsize |
If set to |
labelloc |
Sets the vertical placement of labels for nodes and clusters.
This attribute is used only when the height of the node is larger than the
height of its label. The |
margin |
Sets the amount of space around the node's label. By default,
the value is |
Other aesthetics:
edge_aes()
,
node_edge_aes_data
# Create a new graph and add # a path with several node # aesthetic attributes graph <- create_graph() %>% add_path( n = 3, type = "path", node_aes = node_aes( shape = "circle", x = c(1, 3, 2), y = c(4, -1, 3) ) ) # View the graph's internal # node data frame; the node # aesthetic attributes have # been inserted graph %>% get_node_df() # Create a new graph which is # fully connected graph <- create_graph() %>% add_full_graph( n = 4, node_data = node_data(value = 1:4), node_aes = node_aes( x = c(2, 1, 3, 2), y = c(3, 2, 2, 1) ), edge_aes = edge_aes(color = "blue") )
# Create a new graph and add # a path with several node # aesthetic attributes graph <- create_graph() %>% add_path( n = 3, type = "path", node_aes = node_aes( shape = "circle", x = c(1, 3, 2), y = c(4, -1, 3) ) ) # View the graph's internal # node data frame; the node # aesthetic attributes have # been inserted graph %>% get_node_df() # Create a new graph which is # fully connected graph <- create_graph() %>% add_full_graph( n = 4, node_data = node_data(value = 1:4), node_aes = node_aes( x = c(2, 1, 3, 2), y = c(3, 2, 2, 1) ), edge_aes = edge_aes(color = "blue") )
This helper function should be invoked to provide values for the namesake
node_data
argument, which is present in any function where nodes are
created.
node_data(...)
node_data(...)
... |
Node data attributes provided as one or more named vectors. |
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a new graph and add # a path with several node # data attributes graph <- create_graph() %>% add_path( n = 3, type = "path", node_data = node_data( hour = 5, index = c(1, 3, 2))) # View the graph's internal # node data frame; the node # data attributes have been # inserted graph %>% get_node_df()
# Create a new graph and add # a path with several node # data attributes graph <- create_graph() %>% add_path( n = 3, type = "path", node_data = node_data( hour = 5, index = c(1, 3, 2))) # View the graph's internal # node data frame; the node # data attributes have been # inserted graph %>% get_node_df()
A very simple, 2-column data frame that can be used to generate graph nodes.
node_list_1
node_list_1
A data frame with 10 rows and 2 variables:
a unique, monotonically increasing integer ID value
a unique label associated with each ID value
A simple, 5-column data frame that can be used to generate graph nodes.
node_list_2
node_list_2
A data frame with 10 rows and 5 variables:
a unique, monotonically increasing integer ID value
a unique label associated with each ID value
a grouping variable of either x, y, or z
a randomized set of numeric values between 0 and 10
a randomized set of numeric values between 0 and 10
With an active selection of nodes, move the position in either the x
or y
directions, or both. Nodes in the selection that do not have position
information (i.e., NA
values for the x
or y
node attributes) will be
ignored.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
nudge_node_positions_ws(graph, dx, dy)
nudge_node_positions_ws(graph, dx, dy)
graph |
A graph object of class |
dx |
A single numeric value specifying the amount that selected nodes
(with non- |
dy |
A single numeric value specifying the amount that selected nodes
(with non- |
A graph object of class dgr_graph
.
# Create a simple graph with 4 nodes graph <- create_graph() %>% add_node( type = "a", label = "one") %>% add_node( type = "a", label = "two") %>% add_node( type = "b", label = "three") %>% add_node( type = "b", label = "four") # Add position information to each of # the graph's nodes graph <- graph %>% set_node_position( node = 1, x = 1, y = 1) %>% set_node_position( node = 2, x = 2, y = 2) %>% set_node_position( node = 3, x = 3, y = 3) %>% set_node_position( node = 4, x = 4, y = 4) # Select all of the graph's nodes using the # `select_nodes()` function (and only # specifying the graph object) graph <- select_nodes(graph) # Move the selected nodes (all the nodes, # in this case) 5 units to the right graph <- graph %>% nudge_node_positions_ws( dx = 5, dy = 0) # View the graph's node data frame graph %>% get_node_df() # Now select nodes that have `type == "b"` # and move them in the `y` direction 2 units # (the graph still has an active selection # and so it must be cleared first) graph <- graph %>% clear_selection() %>% select_nodes( conditions = type == "b") %>% nudge_node_positions_ws( dx = 0, dy = 2) # View the graph's node data frame graph %>% get_node_df()
# Create a simple graph with 4 nodes graph <- create_graph() %>% add_node( type = "a", label = "one") %>% add_node( type = "a", label = "two") %>% add_node( type = "b", label = "three") %>% add_node( type = "b", label = "four") # Add position information to each of # the graph's nodes graph <- graph %>% set_node_position( node = 1, x = 1, y = 1) %>% set_node_position( node = 2, x = 2, y = 2) %>% set_node_position( node = 3, x = 3, y = 3) %>% set_node_position( node = 4, x = 4, y = 4) # Select all of the graph's nodes using the # `select_nodes()` function (and only # specifying the graph object) graph <- select_nodes(graph) # Move the selected nodes (all the nodes, # in this case) 5 units to the right graph <- graph %>% nudge_node_positions_ws( dx = 5, dy = 0) # View the graph's node data frame graph %>% get_node_df() # Now select nodes that have `type == "b"` # and move them in the `y` direction 2 units # (the graph still has an active selection # and so it must be cleared first) graph <- graph %>% clear_selection() %>% select_nodes( conditions = type == "b") %>% nudge_node_positions_ws( dx = 0, dy = 2) # View the graph's node data frame graph %>% get_node_df()
Load a graph or a graph series object from disk.
open_graph(file)
open_graph(file)
file |
The filename for the graph or graph series. Optionally, this may contain a path to the file. |
# Create an undirected GNP # graph with 100 nodes using # a probability value of 0.05 gnp_graph <- create_graph( directed = FALSE) %>% add_gnp_graph( n = 100, p = 0.05 ) # Save the graph to disk; use # the file name `gnp_graph.dgr` # save_graph( # x = gnp_graph, # file = "gnp_graph" # ) # To read the graph file from # disk, use `open_graph()` # gnp_graph_2 <- # open_graph( # file = "gnp_graph.dgr" # )
# Create an undirected GNP # graph with 100 nodes using # a probability value of 0.05 gnp_graph <- create_graph( directed = FALSE) %>% add_gnp_graph( n = 100, p = 0.05 ) # Save the graph to disk; use # the file name `gnp_graph.dgr` # save_graph( # x = gnp_graph, # file = "gnp_graph" # ) # To read the graph file from # disk, use `open_graph()` # gnp_graph_2 <- # open_graph( # file = "gnp_graph.dgr" # )
Within a graph's internal edge data frame (edf), recode character or numeric edge attribute values. Optionally, one can specify a replacement value for any unmatched mappings.
recode_edge_attrs( graph, edge_attr_from, ..., otherwise = NULL, edge_attr_to = NULL )
recode_edge_attrs( graph, edge_attr_from, ..., otherwise = NULL, edge_attr_to = NULL )
graph |
A graph object of class |
edge_attr_from |
The name of the edge attribute column from which values will be recoded. |
... |
Single-length character vectors with the recoding instructions.
The first component should have the value to replace and the second should
have the replacement value (in the form |
otherwise |
An optional single value for recoding any unmatched values. |
edge_attr_to |
An optional name of a new edge attribute to which the recoded values will be applied. This will retain the original edge attribute and its values. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 6, set_seed = 23) %>% set_edge_attrs( edge_attr = rel, values = c("a", "b", "a", "c", "b", "d")) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Recode the `rel` node # attribute, creating a new edge # attribute called `penwidth`; # here, `a` is recoded to `1.0`, # `b` maps to `1.5`, and all # other values become `0.5` graph <- graph %>% recode_edge_attrs( edge_attr_from = rel, "a -> 1.0", "b -> 1.5", otherwise = 0.5, edge_attr_to = penwidth) # Get the graph's internal edf # to show that the node # attribute values had been # recoded and copied into a # new node attribute graph %>% get_edge_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 6, set_seed = 23) %>% set_edge_attrs( edge_attr = rel, values = c("a", "b", "a", "c", "b", "d")) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Recode the `rel` node # attribute, creating a new edge # attribute called `penwidth`; # here, `a` is recoded to `1.0`, # `b` maps to `1.5`, and all # other values become `0.5` graph <- graph %>% recode_edge_attrs( edge_attr_from = rel, "a -> 1.0", "b -> 1.5", otherwise = 0.5, edge_attr_to = penwidth) # Get the graph's internal edf # to show that the node # attribute values had been # recoded and copied into a # new node attribute graph %>% get_edge_df()
Within a graph's internal node data frame (ndf), recode character or numeric node attribute values. Optionally, one can specify a replacement value for any unmatched mappings.
recode_node_attrs( graph, node_attr_from, ..., otherwise = NULL, node_attr_to = NULL )
recode_node_attrs( graph, node_attr_from, ..., otherwise = NULL, node_attr_to = NULL )
graph |
A graph object of class |
node_attr_from |
The name of the node attribute column from which values will be recoded. |
... |
Single-length character vectors with the recoding instructions.
The first component should have the value to replace and the second should
have the replacement value (in the form |
otherwise |
An optional single value for recoding any unmatched values. |
node_attr_to |
An optional name of a new node attribute to which the recoded values will be applied. This will retain the original node attribute and its values. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = c("circle", "hexagon", "rectangle", "rectangle", "circle")) # Get the graph's internal ndf # to show which node # attributes are available graph %>% get_node_df() # Recode the `shape` node # attribute, so that `circle` # is recoded to `square` and that # `rectangle` becomes `triangle` graph <- graph %>% recode_node_attrs( node_attr_from = shape, "circle -> square", "rectangle -> triangle") # Get the graph's internal # ndf to show that the node # attribute values had been recoded graph %>% get_node_df() # Create a new node attribute, # called `color`, that is based # on a recoding of `shape`; here, # map the square shape to a `red` # color and map all other shapes # to a `green` color graph <- graph %>% recode_node_attrs( node_attr_from = shape, "square -> red", otherwise = "green", node_attr_to = color) # Get the graph's internal ndf # to see the change graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = c("circle", "hexagon", "rectangle", "rectangle", "circle")) # Get the graph's internal ndf # to show which node # attributes are available graph %>% get_node_df() # Recode the `shape` node # attribute, so that `circle` # is recoded to `square` and that # `rectangle` becomes `triangle` graph <- graph %>% recode_node_attrs( node_attr_from = shape, "circle -> square", "rectangle -> triangle") # Get the graph's internal # ndf to show that the node # attribute values had been recoded graph %>% get_node_df() # Create a new node attribute, # called `color`, that is based # on a recoding of `shape`; here, # map the square shape to a `red` # color and map all other shapes # to a `green` color graph <- graph %>% recode_node_attrs( node_attr_from = shape, "square -> red", otherwise = "green", node_attr_to = color) # Get the graph's internal ndf # to see the change graph %>% get_node_df()
Remove a single graph object from an set of graph objects contained within a graph series object.
remove_graph_from_graph_series(graph_series, index = "last")
remove_graph_from_graph_series(graph_series, index = "last")
graph_series |
A graph series object from which the graph object will be removed. |
index |
The index of the graph object to be removed from the graph series object. |
A graph series object of type dgr_graph_1D
.
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Remove the second graph # from the graph series series <- series %>% remove_graph_from_graph_series( index = 2) # With `get_graph_series_info()`, # we can ensure that a graph # was removed series %>% get_graph_series_info()
# Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # Remove the second graph # from the graph series series <- series %>% remove_graph_from_graph_series( index = 2) # With `get_graph_series_info()`, # we can ensure that a graph # was removed series %>% get_graph_series_info()
Within a graph's internal edge data frame (edf), rename an existing edge attribute.
rename_edge_attrs(graph, edge_attr_from, edge_attr_to)
rename_edge_attrs(graph, edge_attr_from, edge_attr_to)
graph |
A graph object of class |
edge_attr_from |
The name of the edge attribute that will be renamed. |
edge_attr_to |
The new name of the edge attribute column identified in
|
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) %>% set_edge_attrs( edge_attr = color, values = "green") # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Rename the `color` node # attribute as `weight` graph <- graph %>% rename_edge_attrs( edge_attr_from = color, edge_attr_to = labelfontcolor) # Get the graph's internal # edf to show that the edge # attribute had been renamed graph %>% get_edge_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) %>% set_edge_attrs( edge_attr = color, values = "green") # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Rename the `color` node # attribute as `weight` graph <- graph %>% rename_edge_attrs( edge_attr_from = color, edge_attr_to = labelfontcolor) # Get the graph's internal # edf to show that the edge # attribute had been renamed graph %>% get_edge_df()
Within a graph's internal node data frame (ndf), rename an existing node attribute.
rename_node_attrs(graph, node_attr_from, node_attr_to)
rename_node_attrs(graph, node_attr_from, node_attr_to)
graph |
A graph object of class |
node_attr_from |
The name of the node attribute that will be renamed. |
node_attr_to |
The new name of the node attribute column identified in
|
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = "circle") %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Rename the `value` node # attribute as `weight` graph <- graph %>% rename_node_attrs( node_attr_from = value, node_attr_to = weight) # Get the graph's internal # ndf to show that the node # attribute had been renamed graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 8, set_seed = 23) %>% set_node_attrs( node_attr = shape, values = "circle") %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Rename the `value` node # attribute as `weight` graph <- graph %>% rename_node_attrs( node_attr_from = value, node_attr_to = weight) # Get the graph's internal # ndf to show that the node # attribute had been renamed graph %>% get_node_df()
Using a dgr_graph
object, render the graph in the RStudio Viewer.
render_graph( graph, layout = NULL, output = NULL, as_svg = FALSE, title = NULL, width = NULL, height = NULL )
render_graph( graph, layout = NULL, output = NULL, as_svg = FALSE, title = NULL, width = NULL, height = NULL )
graph |
A graph object of class |
layout |
A string specifying a layout type to use for node placement in
this rendering. Possible layouts include: |
output |
A string specifying the output type; |
as_svg |
An option to render the graph as an SVG document. |
title |
An optional title for a graph when using |
width |
An optional parameter for specifying the width of the resulting graphic in pixels. |
height |
An optional parameter for specifying the height of the resulting graphic in pixels. |
Other Display and Save:
export_graph()
,
render_graph_from_graph_series()
,
save_graph()
if (interactive()) { # Render a graph that's a # balanced tree create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% render_graph() # Use the `tree` layout for # better node placement in this # hierarchical graph create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% render_graph(layout = "tree") # Plot the same tree graph but # don't show the node ID values create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% set_node_attr_to_display() %>% render_graph(layout = "tree") # Create a circle graph create_graph() %>% add_gnm_graph( n = 55, m = 75, set_seed = 23 ) %>% render_graph( layout = "circle" ) # Render the graph using the # `visNetwork` output option create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% render_graph( output = "visNetwork" ) }
if (interactive()) { # Render a graph that's a # balanced tree create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% render_graph() # Use the `tree` layout for # better node placement in this # hierarchical graph create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% render_graph(layout = "tree") # Plot the same tree graph but # don't show the node ID values create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% set_node_attr_to_display() %>% render_graph(layout = "tree") # Create a circle graph create_graph() %>% add_gnm_graph( n = 55, m = 75, set_seed = 23 ) %>% render_graph( layout = "circle" ) # Render the graph using the # `visNetwork` output option create_graph() %>% add_balanced_tree( k = 2, h = 3 ) %>% render_graph( output = "visNetwork" ) }
Using a graph series object of type dgr_graph_1D
, either render graph in
the Viewer or output in various formats.
render_graph_from_graph_series( graph_series, graph_no, output = "graph", width = NULL, height = NULL )
render_graph_from_graph_series( graph_series, graph_no, output = "graph", width = NULL, height = NULL )
graph_series |
A graph series object of type |
graph_no |
The index of the graph in the graph series. |
output |
A string specifying the output type; |
width |
An optional parameter for specifying the width of the resulting graphic in pixels. |
height |
An optional parameter for specifying the height of the resulting graphic in pixels. |
Other Display and Save:
export_graph()
,
render_graph()
,
save_graph()
## Not run: # Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # View the second graph in # the series in the Viewer render_graph_from_graph_series( graph_series = series, graph_no = 2) ## End(Not run)
## Not run: # Create three graphs graph_1 <- create_graph() %>% add_path(n = 4) graph_2 <- create_graph() %>% add_cycle(n = 5) graph_3 <- create_graph() %>% add_star(n = 6) # Create an empty graph series # and add the graphs series <- create_graph_series() %>% add_graph_to_graph_series( graph = graph_1) %>% add_graph_to_graph_series( graph = graph_2) %>% add_graph_to_graph_series( graph = graph_3) # View the second graph in # the series in the Viewer render_graph_from_graph_series( graph_series = series, graph_no = 2) ## End(Not run)
Widget render function for use in Shiny
renderDiagrammeR(expr, env = parent.frame(), quoted = FALSE)
renderDiagrammeR(expr, env = parent.frame(), quoted = FALSE)
expr |
An expression that generates a DiagrammeR graph |
env |
The environment in which to evaluate expr. |
quoted |
Is expr a quoted expression (with quote())? This is useful if you want to save an expression in a variable. |
Widget render function for use in Shiny
renderGrViz(expr, env = parent.frame(), quoted = FALSE)
renderGrViz(expr, env = parent.frame(), quoted = FALSE)
expr |
an expression that generates a DiagrammeR graph |
env |
the environment in which to evaluate expr. |
quoted |
is expr a quoted expression (with quote())? This is useful if you want to save an expression in a variable. |
grVizOutput()
for an example in Shiny.
Reorder the graph actions stored in the graph through the use of the
add_graph_action()
function. These actions are be invoked in a specified
order via the trigger_graph_actions()
function.
reorder_graph_actions(graph, indices)
reorder_graph_actions(graph, indices)
graph |
A graph object of class |
indices |
A numeric vector that provides the new ordering of graph actions. This vector can be the same length as the number of graph actions, or, of shorter length. In the latter case, the ordering places the given items first and the remaining actions will follow. |
A graph object of class dgr_graph
.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) # Add three graph actions to the # graph graph <- graph %>% add_graph_action( fcn = "rescale_node_attrs", node_attr_from = "pagerank", node_attr_to = "width", action_name = "pgrnk_to_width") %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_pagerank", column_name = "pagerank", action_name = "get_pagerank") %>% add_graph_action( fcn = "colorize_node_attrs", node_attr_from = "width", node_attr_to = "fillcolor", action_name = "pgrnk_fillcolor") # View the graph actions for the graph # object by using the function called # `get_graph_actions()` graph %>% get_graph_actions() # We note that the order isn't # correct and that the `get_pagerank` # action should be the 1st action # and `pgrnk_to_width` should go # in 2nd place; to fix this, use the # function `reorder_graph_actions()` # and specify the reordering with a # numeric vector graph <- graph %>% reorder_graph_actions( indices = c(2, 1, 3)) # View the graph actions for the graph # object once again to verify that # we have the desired order of actions graph %>% get_graph_actions()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) # Add three graph actions to the # graph graph <- graph %>% add_graph_action( fcn = "rescale_node_attrs", node_attr_from = "pagerank", node_attr_to = "width", action_name = "pgrnk_to_width") %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_pagerank", column_name = "pagerank", action_name = "get_pagerank") %>% add_graph_action( fcn = "colorize_node_attrs", node_attr_from = "width", node_attr_to = "fillcolor", action_name = "pgrnk_fillcolor") # View the graph actions for the graph # object by using the function called # `get_graph_actions()` graph %>% get_graph_actions() # We note that the order isn't # correct and that the `get_pagerank` # action should be the 1st action # and `pgrnk_to_width` should go # in 2nd place; to fix this, use the # function `reorder_graph_actions()` # and specify the reordering with a # numeric vector graph <- graph %>% reorder_graph_actions( indices = c(2, 1, 3)) # View the graph actions for the graph # object once again to verify that # we have the desired order of actions graph %>% get_graph_actions()
Use Razor-like syntax to define a template for use in a grViz
diagram.
replace_in_spec(spec, envir = parent.frame())
replace_in_spec(spec, envir = parent.frame())
spec |
String spec to be parsed and evaluated. |
envir |
The environment in which substitution functionality takes place. |
## Not run: # a simple example to use a LETTER as a node label spec <- " digraph { '@1' } [1]: LETTERS[1] " grViz(replace_in_spec(spec)) spec <- " digraph a_nice_graph { node [fontname = Helvetica] a [label = '@1'] b [label = '@2-1'] c [label = '@2-2'] d [label = '@2-3'] e [label = '@2-4'] f [label = '@2-5'] g [label = '@2-6'] h [label = '@2-7'] i [label = '@2-8'] j [label = '@2-9'] a -> { b c d e f g h i j} } [1]: 'top' [2]: 10:20 " grViz(replace_in_spec(spec)) ## End(Not run)
## Not run: # a simple example to use a LETTER as a node label spec <- " digraph { '@1' } [1]: LETTERS[1] " grViz(replace_in_spec(spec)) spec <- " digraph a_nice_graph { node [fontname = Helvetica] a [label = '@1'] b [label = '@2-1'] c [label = '@2-2'] d [label = '@2-3'] e [label = '@2-4'] f [label = '@2-5'] g [label = '@2-6'] h [label = '@2-7'] i [label = '@2-8'] j [label = '@2-9'] a -> { b c d e f g h i j} } [1]: 'top' [2]: 10:20 " grViz(replace_in_spec(spec)) ## End(Not run)
From a graph object of class dgr_graph
, take a set of numeric values for an
edge attribute, rescale to a new numeric or color range, then write to the
same edge attribute or to a new edge attribute column.
rescale_edge_attrs( graph, edge_attr_from, to_lower_bound = 0, to_upper_bound = 1, edge_attr_to = NULL, from_lower_bound = NULL, from_upper_bound = NULL )
rescale_edge_attrs( graph, edge_attr_from, to_lower_bound = 0, to_upper_bound = 1, edge_attr_to = NULL, from_lower_bound = NULL, from_upper_bound = NULL )
graph |
A graph object of class |
edge_attr_from |
The edge attribute containing numeric data that is to be rescaled to new numeric or color values. |
to_lower_bound |
The lower bound value for the set of rescaled values. This can be a numeric value or an X11 color name. |
to_upper_bound |
The upper bound value for the set of rescaled values. This can be a numeric value or an X11 color name. |
edge_attr_to |
An optional name of a new edge attribute to which the recoded values will be applied. This will retain the original edge attribute and its values. |
from_lower_bound |
An optional, manually set lower bound value for the rescaled values. If not set, the minimum value from the set will be used. |
from_upper_bound |
An optional, manually set upper bound value for the rescaled values. If not set, the minimum value from the set will be used. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 7, set_seed = 23) %>% set_edge_attrs( edge_attr = weight, values = rnorm( n = count_edges(.), mean = 5, sd = 1)) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Rescale the `weight` edge # attribute, so that its values # are rescaled between 0 and 1 graph <- graph %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = 0, to_upper_bound = 1) # Get the graph's internal edf # to show that the edge attribute # values had been rescaled graph %>% get_edge_df() # Scale the values in the `weight` # edge attribute to different # shades of gray for the `color` # edge attribute and different # numerical values for the # `penwidth` attribute graph <- graph %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = "gray80", to_upper_bound = "gray20", edge_attr_to = color) %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = 0.5, to_upper_bound = 3, edge_attr_to = penwidth) # Get the graph's internal edf # once more to show that scaled # grayscale colors are now available # in `color` and scaled numerical # values are in the `penwidth` # edge attribute graph %>% get_edge_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 7, set_seed = 23) %>% set_edge_attrs( edge_attr = weight, values = rnorm( n = count_edges(.), mean = 5, sd = 1)) # Get the graph's internal edf # to show which edge attributes # are available graph %>% get_edge_df() # Rescale the `weight` edge # attribute, so that its values # are rescaled between 0 and 1 graph <- graph %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = 0, to_upper_bound = 1) # Get the graph's internal edf # to show that the edge attribute # values had been rescaled graph %>% get_edge_df() # Scale the values in the `weight` # edge attribute to different # shades of gray for the `color` # edge attribute and different # numerical values for the # `penwidth` attribute graph <- graph %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = "gray80", to_upper_bound = "gray20", edge_attr_to = color) %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = 0.5, to_upper_bound = 3, edge_attr_to = penwidth) # Get the graph's internal edf # once more to show that scaled # grayscale colors are now available # in `color` and scaled numerical # values are in the `penwidth` # edge attribute graph %>% get_edge_df()
From a graph object of class dgr_graph
, take a set of numeric values for a
node attribute, rescale to a new numeric or color range, then write to the
same node attribute or to a new node attribute column.
rescale_node_attrs( graph, node_attr_from, to_lower_bound = 0, to_upper_bound = 1, node_attr_to = NULL, from_lower_bound = NULL, from_upper_bound = NULL )
rescale_node_attrs( graph, node_attr_from, to_lower_bound = 0, to_upper_bound = 1, node_attr_to = NULL, from_lower_bound = NULL, from_upper_bound = NULL )
graph |
A graph object of class |
node_attr_from |
The node attribute containing numeric data that is to be rescaled to new numeric or color values. |
to_lower_bound |
The lower bound value for the set of rescaled values. This can be a numeric value or an X11 color name. |
to_upper_bound |
The upper bound value for the set of rescaled values. This can be a numeric value or an X11 color name. |
node_attr_to |
An optional name of a new node attribute to which the recoded values will be applied. This will retain the original node attribute and its values. |
from_lower_bound |
An optional, manually set lower bound value for the rescaled values. If not set, the minimum value from the set will be used. |
from_upper_bound |
An optional, manually set upper bound value for the rescaled values. If not set, the minimum value from the set will be used. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Rescale the `value` node # attribute, so that its values # are rescaled between 0 and 1 graph <- graph %>% rescale_node_attrs( node_attr_from = value, to_lower_bound = 0, to_upper_bound = 1) # Get the graph's internal ndf # to show that the node attribute # values had been rescaled graph %>% get_node_df() # Scale the values in the `value` # node attribute to different # shades of gray for the `fillcolor` # and `fontcolor` node attributes graph <- graph %>% rescale_node_attrs( node_attr_from = value, to_lower_bound = "gray80", to_upper_bound = "gray20", node_attr_to = fillcolor) %>% rescale_node_attrs( node_attr_from = value, to_lower_bound = "gray5", to_upper_bound = "gray95", node_attr_to = fontcolor) # Get the graph's internal ndf # once more to show that scaled # grayscale colors are now available # in the `fillcolor` and `fontcolor` # node attributes graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the graph's internal ndf # to show which node attributes # are available graph %>% get_node_df() # Rescale the `value` node # attribute, so that its values # are rescaled between 0 and 1 graph <- graph %>% rescale_node_attrs( node_attr_from = value, to_lower_bound = 0, to_upper_bound = 1) # Get the graph's internal ndf # to show that the node attribute # values had been rescaled graph %>% get_node_df() # Scale the values in the `value` # node attribute to different # shades of gray for the `fillcolor` # and `fontcolor` node attributes graph <- graph %>% rescale_node_attrs( node_attr_from = value, to_lower_bound = "gray80", to_upper_bound = "gray20", node_attr_to = fillcolor) %>% rescale_node_attrs( node_attr_from = value, to_lower_bound = "gray5", to_upper_bound = "gray95", node_attr_to = fontcolor) # Get the graph's internal ndf # once more to show that scaled # grayscale colors are now available # in the `fillcolor` and `fontcolor` # node attributes graph %>% get_node_df()
Using a directed graph as input, reverse the direction of all edges in that graph.
rev_edge_dir(graph)
rev_edge_dir(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with a # directed tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Inspect the graph's edges graph %>% get_edges() # Reverse the edge directions # such that edges are directed # toward the root of the tree graph <- graph %>% rev_edge_dir() # Inspect the graph's edges # after their reversal graph %>% get_edges()
# Create a graph with a # directed tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Inspect the graph's edges graph %>% get_edges() # Reverse the edge directions # such that edges are directed # toward the root of the tree graph <- graph %>% rev_edge_dir() # Inspect the graph's edges # after their reversal graph %>% get_edges()
Using a directed graph with a selection of edges as input, reverse the direction of those selected edges in input graph.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
rev_edge_dir_ws(graph)
rev_edge_dir_ws(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
set_edge_attr_to_display()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a graph with a # directed tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Inspect the graph's edges graph %>% get_edges() # Select all edges associated # with nodes `1` and `2` graph <- graph %>% select_edges_by_node_id( nodes = 1:2) # Reverse the edge directions # of the edges associated with # nodes `1` and `2` graph <- graph %>% rev_edge_dir_ws() # Inspect the graph's edges # after their reversal graph %>% get_edges()
# Create a graph with a # directed tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Inspect the graph's edges graph %>% get_edges() # Select all edges associated # with nodes `1` and `2` graph <- graph %>% select_edges_by_node_id( nodes = 1:2) # Reverse the edge directions # of the edges associated with # nodes `1` and `2` graph <- graph %>% rev_edge_dir_ws() # Inspect the graph's edges # after their reversal graph %>% get_edges()
Save a graph or a graph series object to disk.
save_graph(x, file)
save_graph(x, file)
x |
A graph object of class |
file |
A file name for the graph or graph series. Provide a character
string and the |
Other Display and Save:
export_graph()
,
render_graph()
,
render_graph_from_graph_series()
# Create an undirected GNP # graph with 100 nodes using # a probability value of 0.05 gnp_graph <- create_graph( directed = FALSE) %>% add_gnp_graph( n = 100, p = 0.05) # Save the graph to disk; use # the file name `gnp_graph.dgr` # save_graph( # x = gnp_graph, # file = "gnp_graph" # ) # To read the graph file from # disk, use `open_graph()` # gnp_graph_2 <- # open_graph( # file = "gnp_graph.dgr" # )
# Create an undirected GNP # graph with 100 nodes using # a probability value of 0.05 gnp_graph <- create_graph( directed = FALSE) %>% add_gnp_graph( n = 100, p = 0.05) # Save the graph to disk; use # the file name `gnp_graph.dgr` # save_graph( # x = gnp_graph, # file = "gnp_graph" # ) # To read the graph file from # disk, use `open_graph()` # gnp_graph_2 <- # open_graph( # file = "gnp_graph.dgr" # )
Select edges from a graph object of class dgr_graph
.
select_edges( graph, conditions = NULL, set_op = "union", from = NULL, to = NULL, edges = NULL )
select_edges( graph, conditions = NULL, set_op = "union", from = NULL, to = NULL, edges = NULL )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the retrieval of edges. |
set_op |
The set operation to perform upon consecutive selections of
graph nodes. This can either be as a |
from |
An optional vector of node IDs from which the edge is outgoing for filtering the list of edges present in the graph. |
to |
An optional vector of node IDs to which the edge is incoming for filtering the list of edges present in the graph. |
edges |
An optional vector of edge IDs for filtering the list of edges present in the graph. |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "basic", label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("a", "z", "a"), value = c(6.4, 2.9, 5.0)) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select the edge `1`->`4` graph <- graph %>% select_edges( from = 1, to = 4) # Verify that an edge selection has been made # using the `get_selection()` function graph %>% get_selection() # Select edges based on the relationship label # being `z` graph <- graph %>% clear_selection() %>% select_edges( conditions = rel == "z") # Verify that an edge selection has been made, and # recall that the `2`->`3` edge uniquely has the # `z` relationship label graph %>% get_selection() # Select edges based on the edge value attribute # being greater than 3.0 (first clearing the current # selection of edges) graph <- graph %>% clear_selection() %>% select_edges( conditions = value > 3.0) # Verify that the correct edge selection has been # made; in this case, edges `1`->`4` and # `3`->`1` have values for `value` > 3.0 graph %>% get_selection()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "basic", label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("a", "z", "a"), value = c(6.4, 2.9, 5.0)) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select the edge `1`->`4` graph <- graph %>% select_edges( from = 1, to = 4) # Verify that an edge selection has been made # using the `get_selection()` function graph %>% get_selection() # Select edges based on the relationship label # being `z` graph <- graph %>% clear_selection() %>% select_edges( conditions = rel == "z") # Verify that an edge selection has been made, and # recall that the `2`->`3` edge uniquely has the # `z` relationship label graph %>% get_selection() # Select edges based on the edge value attribute # being greater than 3.0 (first clearing the current # selection of edges) graph <- graph %>% clear_selection() %>% select_edges( conditions = value > 3.0) # Verify that the correct edge selection has been # made; in this case, edges `1`->`4` and # `3`->`1` have values for `value` > 3.0 graph %>% get_selection()
Select edges in a graph object of class dgr_graph
using edge ID values.
select_edges_by_edge_id(graph, edges, set_op = "union")
select_edges_by_edge_id(graph, edges, set_op = "union")
graph |
A graph object of class |
edges |
A vector of edge IDs for the selection of edges present in the graph. |
set_op |
The set operation to perform upon consecutive selections of
graph edges This can either be as a |
A graph object of class dgr_graph
.
# Create a graph with 5 nodes graph <- create_graph() %>% add_path(n = 5) # Create a graph selection by selecting # edges with edge IDs `1` and `2` graph <- graph %>% select_edges_by_edge_id( edges = 1:2) # Get the selection of edges graph %>% get_selection() # Perform another selection of edges, # with edge IDs `1`, `2`, and `4` graph <- graph %>% clear_selection() %>% select_edges_by_edge_id( edges = c(1, 2, 4)) # Get the selection of edges graph %>% get_selection() # Get the fraction of edges selected # over all the edges in the graph graph %>% { l <- get_selection(.) %>% length(.) e <- count_edges(.) l/e }
# Create a graph with 5 nodes graph <- create_graph() %>% add_path(n = 5) # Create a graph selection by selecting # edges with edge IDs `1` and `2` graph <- graph %>% select_edges_by_edge_id( edges = 1:2) # Get the selection of edges graph %>% get_selection() # Perform another selection of edges, # with edge IDs `1`, `2`, and `4` graph <- graph %>% clear_selection() %>% select_edges_by_edge_id( edges = c(1, 2, 4)) # Get the selection of edges graph %>% get_selection() # Get the fraction of edges selected # over all the edges in the graph graph %>% { l <- get_selection(.) %>% length(.) e <- count_edges(.) l/e }
Select edges in a graph object of class dgr_graph
using node ID values. All
edges associated with the provided nodes will be included in the selection.
select_edges_by_node_id(graph, nodes, set_op = "union")
select_edges_by_node_id(graph, nodes, set_op = "union")
graph |
A graph object of class |
nodes |
A vector of node IDs for the selection of edges present in the graph. |
set_op |
The set operation to perform upon consecutive selections of
graph edges This can either be as a |
A graph object of class dgr_graph
.
# Create a graph with 5 nodes graph <- create_graph() %>% add_path(n = 5) # Create a graph selection by selecting edges # associated with nodes `1` and `2` graph <- graph %>% select_edges_by_node_id( nodes = 1:2) # Get the selection of edges graph %>% get_selection() # Perform another selection of edges, with nodes # `1`, `2`, and `4` graph <- graph %>% clear_selection() %>% select_edges_by_node_id( nodes = c(1, 2, 4)) # Get the selection of edges graph %>% get_selection() # Get a fraction of the edges selected over all # the edges in the graph graph %>% { l <- get_selection(.) %>% length(.) e <- count_edges(.) l/e }
# Create a graph with 5 nodes graph <- create_graph() %>% add_path(n = 5) # Create a graph selection by selecting edges # associated with nodes `1` and `2` graph <- graph %>% select_edges_by_node_id( nodes = 1:2) # Get the selection of edges graph %>% get_selection() # Perform another selection of edges, with nodes # `1`, `2`, and `4` graph <- graph %>% clear_selection() %>% select_edges_by_node_id( nodes = c(1, 2, 4)) # Get the selection of edges graph %>% get_selection() # Get a fraction of the edges selected over all # the edges in the graph graph %>% { l <- get_selection(.) %>% length(.) e <- count_edges(.) l/e }
Select the last edges that were created in a graph object of class
dgr_graph
. This function should ideally be used just after creating the
edges to be selected.
select_last_edges_created(graph)
select_last_edges_created(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a graph and add a cycle and then # a tree in 2 separate function calls graph <- create_graph() %>% add_cycle( n = 3, rel = "a") %>% add_balanced_tree( k = 2, h = 2, rel = "b") # Select the last edges created (all edges # from the tree) and then set their edge # color to be `red` graph <- graph %>% select_last_edges_created() %>% set_edge_attrs_ws( edge_attr = color, value = "red") %>% clear_selection() # Display the graph's internal edge # data frame to verify the change graph %>% get_edge_df()
# Create a graph and add a cycle and then # a tree in 2 separate function calls graph <- create_graph() %>% add_cycle( n = 3, rel = "a") %>% add_balanced_tree( k = 2, h = 2, rel = "b") # Select the last edges created (all edges # from the tree) and then set their edge # color to be `red` graph <- graph %>% select_last_edges_created() %>% set_edge_attrs_ws( edge_attr = color, value = "red") %>% clear_selection() # Display the graph's internal edge # data frame to verify the change graph %>% get_edge_df()
Select the last nodes that were created in a graph object of class
dgr_graph
. This function should ideally be used just after creating the
nodes to be selected.
select_last_nodes_created(graph)
select_last_nodes_created(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a graph and add 4 nodes # in 2 separate function calls graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("a_1", "a_2")) %>% add_n_nodes( n = 2, type = "b", label = c("b_1", "b_2")) # Select the last nodes created (2 nodes # from the last function call) and then # set their color to be `red` graph <- graph %>% select_last_nodes_created() %>% set_node_attrs_ws( node_attr = color, value = "red") %>% clear_selection() # Display the graph's internal node # data frame to verify the change graph %>% get_node_df()
# Create a graph and add 4 nodes # in 2 separate function calls graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("a_1", "a_2")) %>% add_n_nodes( n = 2, type = "b", label = c("b_1", "b_2")) # Select the last nodes created (2 nodes # from the last function call) and then # set their color to be `red` graph <- graph %>% select_last_nodes_created() %>% set_node_attrs_ws( node_attr = color, value = "red") %>% clear_selection() # Display the graph's internal node # data frame to verify the change graph %>% get_node_df()
Select nodes from a graph object of class dgr_graph
.
select_nodes(graph, conditions = NULL, set_op = "union", nodes = NULL)
select_nodes(graph, conditions = NULL, set_op = "union", nodes = NULL)
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the retrieval of nodes. |
set_op |
The set operation to perform upon consecutive selections of
graph nodes. This can either be as a |
nodes |
An optional vector of node IDs for filtering the list of nodes present in the graph. |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = c("a", "a", "z", "z"), label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("a", "z", "a")) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select nodes `1` and `3` graph <- graph %>% select_nodes(nodes = c(1, 3)) # Verify that the node selection has been made # using the `get_selection()` function graph %>% get_selection() # Select nodes based on the node `type` # being `z` graph <- graph %>% clear_selection() %>% select_nodes( conditions = type == "z") # Verify that an node selection has been made, and # recall that the `3` and `4` nodes are of the # `z` type graph %>% get_selection() # Select edges based on the node value attribute # being greater than 3.0 (first clearing the current # selection of nodes) graph <- graph %>% clear_selection() %>% select_nodes( conditions = value > 3.0) # Verify that the correct node selection has been # made; in this case, nodes `1` and `3` have values # for `value` greater than 3.0 graph %>% get_selection()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = c("a", "a", "z", "z"), label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = c("a", "z", "a")) # Create a graph with the ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select nodes `1` and `3` graph <- graph %>% select_nodes(nodes = c(1, 3)) # Verify that the node selection has been made # using the `get_selection()` function graph %>% get_selection() # Select nodes based on the node `type` # being `z` graph <- graph %>% clear_selection() %>% select_nodes( conditions = type == "z") # Verify that an node selection has been made, and # recall that the `3` and `4` nodes are of the # `z` type graph %>% get_selection() # Select edges based on the node value attribute # being greater than 3.0 (first clearing the current # selection of nodes) graph <- graph %>% clear_selection() %>% select_nodes( conditions = value > 3.0) # Verify that the correct node selection has been # made; in this case, nodes `1` and `3` have values # for `value` greater than 3.0 graph %>% get_selection()
Using a graph object of class dgr_graph
, create a selection of nodes that
have certain degree values.
select_nodes_by_degree(graph, expressions, set_op = "union")
select_nodes_by_degree(graph, expressions, set_op = "union")
graph |
A graph object of class |
expressions |
One or more expressions for filtering nodes by degree
values. Use a combination of degree type ( |
set_op |
The set operation to perform upon consecutive selections of
graph nodes. This can either be as a |
A graph object of class dgr_graph
.
# Create a random graph using # the `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 35, m = 125, set_seed = 23) # Report which nodes have a # total degree (in-degree + # out-degree) of exactly 9 graph %>% select_nodes_by_degree( expressions = "deg == 9") %>% get_selection() # Report which nodes have a # total degree greater than or # equal to 9 graph %>% select_nodes_by_degree( expressions = "deg >= 9") %>% get_selection() # Combine two calls of # `select_nodes_by_degree()` to # get those nodes with total # degree less than 3 and total # degree greater than 10 (by # default, those `select...()` # functions will `union` the # sets of nodes selected) graph %>% select_nodes_by_degree( expressions = "deg < 3") %>% select_nodes_by_degree( expressions = "deg > 10") %>% get_selection() # Combine two calls of # `select_nodes_by_degree()` to # get those nodes with total # degree greater than or equal # to 3 and less than or equal # to 10 (the key here is to # `intersect` the sets of nodes # selected in the second call) graph %>% select_nodes_by_degree( expressions = "deg >= 3") %>% select_nodes_by_degree( expressions = "deg <= 10", set_op = "intersect") %>% get_selection() # Select all nodes with an # in-degree greater than 5, then, # apply a node attribute to those # selected nodes (coloring the # selected nodes red) graph_2 <- graph %>% select_nodes_by_degree( expressions = "indeg > 5") %>% set_node_attrs_ws( node_attr = color, value = "red") # Get the selection of nodes graph_2 %>% get_selection()
# Create a random graph using # the `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 35, m = 125, set_seed = 23) # Report which nodes have a # total degree (in-degree + # out-degree) of exactly 9 graph %>% select_nodes_by_degree( expressions = "deg == 9") %>% get_selection() # Report which nodes have a # total degree greater than or # equal to 9 graph %>% select_nodes_by_degree( expressions = "deg >= 9") %>% get_selection() # Combine two calls of # `select_nodes_by_degree()` to # get those nodes with total # degree less than 3 and total # degree greater than 10 (by # default, those `select...()` # functions will `union` the # sets of nodes selected) graph %>% select_nodes_by_degree( expressions = "deg < 3") %>% select_nodes_by_degree( expressions = "deg > 10") %>% get_selection() # Combine two calls of # `select_nodes_by_degree()` to # get those nodes with total # degree greater than or equal # to 3 and less than or equal # to 10 (the key here is to # `intersect` the sets of nodes # selected in the second call) graph %>% select_nodes_by_degree( expressions = "deg >= 3") %>% select_nodes_by_degree( expressions = "deg <= 10", set_op = "intersect") %>% get_selection() # Select all nodes with an # in-degree greater than 5, then, # apply a node attribute to those # selected nodes (coloring the # selected nodes red) graph_2 <- graph %>% select_nodes_by_degree( expressions = "indeg > 5") %>% set_node_attrs_ws( node_attr = color, value = "red") # Get the selection of nodes graph_2 %>% get_selection()
Select nodes in a graph object of class dgr_graph
by their node ID values.
If nodes have IDs that are monotonically increasing integer values, then
numeric ranges can be used for the selection.
select_nodes_by_id(graph, nodes, set_op = "union")
select_nodes_by_id(graph, nodes, set_op = "union")
graph |
A graph object of class |
nodes |
A vector of node IDs for the selection of nodes present in the graph. |
set_op |
The set operation to perform upon consecutive selections of
graph nodes. This can either be as a |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df(n = 10) # Create a graph graph <- create_graph( nodes_df = ndf) # Select nodes `1` to `5` and show that # selection of nodes with `get_selection()` graph %>% select_nodes_by_id(nodes = 1:5) %>% get_selection()
# Create a node data frame (ndf) ndf <- create_node_df(n = 10) # Create a graph graph <- create_graph( nodes_df = ndf) # Select nodes `1` to `5` and show that # selection of nodes with `get_selection()` graph %>% select_nodes_by_id(nodes = 1:5) %>% get_selection()
Select those nodes in the neighborhood of nodes connected a specified distance from an initial node.
select_nodes_in_neighborhood(graph, node, distance, set_op = "union")
select_nodes_in_neighborhood(graph, node, distance, set_op = "union")
graph |
A graph object of class |
node |
The node from which the traversal will originate. |
distance |
The maximum number of steps from the |
set_op |
The set operation to perform upon consecutive selections of
graph nodes. This can either be as a |
A graph object of class dgr_graph
.
# Create a graph containing # a balanced tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Create a graph selection by # selecting nodes in the # neighborhood of node `1`, where # the neighborhood is limited by # nodes that are 1 connection # away from node `1` graph <- graph %>% select_nodes_in_neighborhood( node = 1, distance = 1) # Get the selection of nodes graph %>% get_selection() # Perform another selection # of nodes, this time with a # neighborhood spanning 2 nodes # from node `1` graph <- graph %>% clear_selection() %>% select_nodes_in_neighborhood( node = 1, distance = 2) # Get the selection of nodes graph %>% get_selection()
# Create a graph containing # a balanced tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Create a graph selection by # selecting nodes in the # neighborhood of node `1`, where # the neighborhood is limited by # nodes that are 1 connection # away from node `1` graph <- graph %>% select_nodes_in_neighborhood( node = 1, distance = 1) # Get the selection of nodes graph %>% get_selection() # Perform another selection # of nodes, this time with a # neighborhood spanning 2 nodes # from node `1` graph <- graph %>% clear_selection() %>% select_nodes_in_neighborhood( node = 1, distance = 2) # Get the selection of nodes graph %>% get_selection()
Place any vector in the cache of a graph object of class dgr_graph
.
set_cache(graph, to_cache, name = NULL, col = NULL)
set_cache(graph, to_cache, name = NULL, col = NULL)
graph |
A graph object of class |
to_cache |
Any vector or data frame. If a data frame is supplied then a
single column for the vector to pull must be provided in the |
name |
An optional name for the cached vector. |
col |
If a data frame is provided in |
A graph object of class dgr_graph
.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 22, set_seed = 23 ) # Get the closeness values for # all nodes from `1` to `10` and # store in the graph's cache graph <- graph %>% set_cache( name = "closeness_vector", to_cache = get_closeness(.), col = "closeness" ) # Get the graph's cache graph %>% get_cache(name = "closeness_vector") # Get the difference of betweenness # and closeness values for nodes in # the graph and store the vector in # the graph's cache graph <- graph %>% set_cache( name = "difference", to_cache = get_betweenness(.)$betweenness - get_closeness(.)$closeness ) # Get the graph's cache graph %>% get_cache(name = "difference")
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 22, set_seed = 23 ) # Get the closeness values for # all nodes from `1` to `10` and # store in the graph's cache graph <- graph %>% set_cache( name = "closeness_vector", to_cache = get_closeness(.), col = "closeness" ) # Get the graph's cache graph %>% get_cache(name = "closeness_vector") # Get the difference of betweenness # and closeness values for nodes in # the graph and store the vector in # the graph's cache graph <- graph %>% set_cache( name = "difference", to_cache = get_betweenness(.)$betweenness - get_closeness(.)$closeness ) # Get the graph's cache graph %>% get_cache(name = "difference")
Set a edge attribute type to display as edge text when calling the
render_graph()
function. This allows for display of different types of edge
attribute values on a per-edge basis. Without setting the display
attribute, rendering a graph will default to not printing any text on edges.
Setting the display
edge attribute with this function for the first time
(i.e., the display
column doesn't exist in the graph's internal edge data
frame) will insert the attr
value for all edges specified in edges
and a
default value (default
) for all remaining edges.
set_edge_attr_to_display(graph, attr = NULL, edges = NULL, default = "label")
set_edge_attr_to_display(graph, attr = NULL, edges = NULL, default = "label")
graph |
A graph object of class |
attr |
The name of the attribute from which label text for the edge will
be obtained. If set to |
edges |
A length vector containing one or several edge ID values (as
integers) for which edge attributes are set for display in the rendered
graph. If |
default |
The name of an attribute to set for all other graph edges not
included in |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attrs()
,
set_edge_attrs_ws()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_edge_attrs( edge_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # For edge ID values of `1`, # `2`, and `3`, choose to display # the edge `value` attribute (for # the other edges, display nothing) graph <- graph %>% set_edge_attr_to_display( edges = 1:3, attr = value, default = NA) # Show the graph's edge data frame; the # `display` edge attribute will show, for # each row, which edge attribute value to # display when the graph is rendered graph %>% get_edge_df() # This function can be called multiple # times on a graph; after the first time # (i.e., creation of the `display` # attribute), the `default` value won't # be used graph %>% set_edge_attr_to_display( edges = 4, attr = to) %>% set_edge_attr_to_display( edges = c(1, 3), attr = id) %>% get_edge_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_edge_attrs( edge_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # For edge ID values of `1`, # `2`, and `3`, choose to display # the edge `value` attribute (for # the other edges, display nothing) graph <- graph %>% set_edge_attr_to_display( edges = 1:3, attr = value, default = NA) # Show the graph's edge data frame; the # `display` edge attribute will show, for # each row, which edge attribute value to # display when the graph is rendered graph %>% get_edge_df() # This function can be called multiple # times on a graph; after the first time # (i.e., creation of the `display` # attribute), the `default` value won't # be used graph %>% set_edge_attr_to_display( edges = 4, attr = to) %>% set_edge_attr_to_display( edges = c(1, 3), attr = id) %>% get_edge_df()
From a graph object of class dgr_graph
, set edge attribute values for one
or more edges.
set_edge_attrs(graph, edge_attr, values, from = NULL, to = NULL)
set_edge_attrs(graph, edge_attr, values, from = NULL, to = NULL)
graph |
A graph object of class |
edge_attr |
The name of the attribute to set. Some examples are located in |
values |
The values to be set for the chosen attribute for the chosen edges. |
from |
An optional vector of node IDs from which the edge is outgoing for filtering list of nodes with outgoing edges in the graph. |
to |
An optional vector of node IDs from which the edge is incoming for filtering list of nodes with incoming edges in the graph. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs_ws()
# Create a simple graph ndf <- create_node_df( n = 4, type = "basic", label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to") graph <- create_graph( nodes_df = ndf, edges_df = edf) # Set attribute `color = "green"` # for edges `1`->`4` and `3`->`1` # in the graph graph <- graph %>% set_edge_attrs( edge_attr = color, values = "green", from = c(1, 3), to = c(4, 1)) # Set attribute `color = "blue"` # for all edges in the graph graph <- graph %>% set_edge_attrs( edge_attr = color, values = "blue") # Set attribute `color = "pink"` # for all edges in graph outbound # from node with ID value `1` graph <- graph %>% set_edge_attrs( edge_attr = color, values = "pink", from = 1) # Set attribute `color = "black"` # for all edges in graph inbound # to node with ID `1` graph <- graph %>% set_edge_attrs( edge_attr = color, values = "black", to = 1)
# Create a simple graph ndf <- create_node_df( n = 4, type = "basic", label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to") graph <- create_graph( nodes_df = ndf, edges_df = edf) # Set attribute `color = "green"` # for edges `1`->`4` and `3`->`1` # in the graph graph <- graph %>% set_edge_attrs( edge_attr = color, values = "green", from = c(1, 3), to = c(4, 1)) # Set attribute `color = "blue"` # for all edges in the graph graph <- graph %>% set_edge_attrs( edge_attr = color, values = "blue") # Set attribute `color = "pink"` # for all edges in graph outbound # from node with ID value `1` graph <- graph %>% set_edge_attrs( edge_attr = color, values = "pink", from = 1) # Set attribute `color = "black"` # for all edges in graph inbound # to node with ID `1` graph <- graph %>% set_edge_attrs( edge_attr = color, values = "black", to = 1)
From a graph object of class dgr_graph
or an edge data frame, set edge
attribute properties for one or more edges.
This function makes use of an active selection of edges (and the function
ending with _ws
hints at this).
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
set_edge_attrs_ws(graph, edge_attr, value)
set_edge_attrs_ws(graph, edge_attr, value)
graph |
A graph object of class |
edge_attr |
The name of the attribute to set. |
value |
The value to be set for the chosen attribute for the edges in the current selection. |
A graph object of class dgr_graph
.
Other edge creation and removal:
add_edge()
,
add_edge_clone()
,
add_edge_df()
,
add_edges_from_table()
,
add_edges_w_string()
,
add_forward_edges_ws()
,
add_reverse_edges_ws()
,
copy_edge_attrs()
,
create_edge_df()
,
delete_edge()
,
delete_edges_ws()
,
delete_loop_edges_ws()
,
drop_edge_attrs()
,
edge_data()
,
join_edge_attrs()
,
mutate_edge_attrs()
,
mutate_edge_attrs_ws()
,
recode_edge_attrs()
,
rename_edge_attrs()
,
rescale_edge_attrs()
,
rev_edge_dir()
,
rev_edge_dir_ws()
,
set_edge_attr_to_display()
,
set_edge_attrs()
# Create a simple graph graph <- create_graph() %>% add_path(n = 6) # Select specific edges from # the graph and apply the edge # attribute `color = blue` to # those selected edges graph <- graph %>% select_nodes_by_id(nodes = 2:4) %>% trav_out_edge() %>% set_edge_attrs_ws( edge_attr = color, value = "blue") # Show the internal edge data # frame to verify that the # edge attribute has been set # for specific edges graph %>% get_edge_df()
# Create a simple graph graph <- create_graph() %>% add_path(n = 6) # Select specific edges from # the graph and apply the edge # attribute `color = blue` to # those selected edges graph <- graph %>% select_nodes_by_id(nodes = 2:4) %>% trav_out_edge() %>% set_edge_attrs_ws( edge_attr = color, value = "blue") # Show the internal edge data # frame to verify that the # edge attribute has been set # for specific edges graph %>% get_edge_df()
Take a graph which is undirected and convert it to a directed graph.
set_graph_directed(graph)
set_graph_directed(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a graph with a # undirected tree graph <- create_graph( directed = FALSE) %>% add_balanced_tree( k = 2, h = 2) # Convert this graph from # undirected to directed graph <- graph %>% set_graph_directed() # Perform a check on whether # graph is directed graph %>% is_graph_directed()
# Create a graph with a # undirected tree graph <- create_graph( directed = FALSE) %>% add_balanced_tree( k = 2, h = 2) # Convert this graph from # undirected to directed graph <- graph %>% set_graph_directed() # Perform a check on whether # graph is directed graph %>% is_graph_directed()
Set a name for a graph object of class dgr_graph
.
set_graph_name(graph, name)
set_graph_name(graph, name)
graph |
A graph object of class |
name |
The name to set for the graph. |
A graph object of class dgr_graph
.
# Create an empty graph graph <- create_graph() # Provide the new graph with a name graph <- graph %>% set_graph_name( name = "example_name")
# Create an empty graph graph <- create_graph() # Provide the new graph with a name graph <- graph %>% set_graph_name( name = "example_name")
Set the time and timezone for a graph object of class dgr_graph
.
set_graph_time(graph, time = NULL, tz = NULL)
set_graph_time(graph, time = NULL, tz = NULL)
graph |
A graph object of class |
time |
The date-time to set for the graph. |
tz |
The timezone to set for the graph. |
A graph object of class dgr_graph
.
# Create an empty graph graph <- create_graph() # Provide the new graph with a timestamp (if `tz` # is not supplied, `GMT` is used as the time zone) graph_1 <- graph %>% set_graph_time(time = "2015-10-25 15:23:00") # Provide the new graph with a timestamp that is # the current time; the time zone is inferred from # the user's locale graph_2 <- graph %>% set_graph_time() # The time zone can be updated when a timestamp # is present graph_2 <- graph_2 %>% set_graph_time(tz = "America/Los_Angeles")
# Create an empty graph graph <- create_graph() # Provide the new graph with a timestamp (if `tz` # is not supplied, `GMT` is used as the time zone) graph_1 <- graph %>% set_graph_time(time = "2015-10-25 15:23:00") # Provide the new graph with a timestamp that is # the current time; the time zone is inferred from # the user's locale graph_2 <- graph %>% set_graph_time() # The time zone can be updated when a timestamp # is present graph_2 <- graph_2 %>% set_graph_time(tz = "America/Los_Angeles")
Take a graph which is directed and convert it to an undirected graph.
set_graph_undirected(graph)
set_graph_undirected(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a graph with a # directed tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Convert this graph from # directed to undirected graph <- graph %>% set_graph_undirected() # Perform a check on whether # graph is directed graph %>% is_graph_directed()
# Create a graph with a # directed tree graph <- create_graph() %>% add_balanced_tree( k = 2, h = 2) # Convert this graph from # directed to undirected graph <- graph %>% set_graph_undirected() # Perform a check on whether # graph is directed graph %>% is_graph_directed()
Set a node attribute type to display as node text when calling the
render_graph()
function. This allows for display of different types of node
attribute values on a per-node basis. Without setting the display
attribute, rendering a graph will default to printing text from the label
attribute on nodes. Setting the display
node attribute with this function
for the first time (i.e., the display
column doesn't exist in the graph's
internal node data frame) will insert the attr
value for all nodes
specified in nodes
and a default value (default
) for all remaining nodes.
set_node_attr_to_display(graph, attr = NULL, nodes = NULL, default = "label")
set_node_attr_to_display(graph, attr = NULL, nodes = NULL, default = "label")
graph |
A graph object of class |
attr |
The name of the attribute from which label text for the node will
be obtained. If set to |
nodes |
A length vector containing one or several node ID values (as
integers) for which node attributes are set for display in the rendered
graph. If |
default |
The name of an attribute to set for all other graph nodes not
included in |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # For node ID values of `1`, # `2`, and `3`, choose to display # the node `value` attribute (for # the other nodes, display nothing) graph <- graph %>% set_node_attr_to_display( nodes = 1:3, attr = value, default = NA) # Show the graph's node data frame; the # `display` node attribute will show for # each row, which node attribute value to # display when the graph is rendered graph %>% get_node_df() # This function can be called multiple # times on a graph; after the first time # (i.e., creation of the `display` # attribute), the `default` value won't # be used graph %>% set_node_attr_to_display( nodes = 4, attr = label) %>% set_node_attr_to_display( nodes = c(1, 3), attr = id) %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 4, m = 4, set_seed = 23) %>% set_node_attrs( node_attr = value, values = c(2.5, 8.2, 4.2, 2.4)) # For node ID values of `1`, # `2`, and `3`, choose to display # the node `value` attribute (for # the other nodes, display nothing) graph <- graph %>% set_node_attr_to_display( nodes = 1:3, attr = value, default = NA) # Show the graph's node data frame; the # `display` node attribute will show for # each row, which node attribute value to # display when the graph is rendered graph %>% get_node_df() # This function can be called multiple # times on a graph; after the first time # (i.e., creation of the `display` # attribute), the `default` value won't # be used graph %>% set_node_attr_to_display( nodes = 4, attr = label) %>% set_node_attr_to_display( nodes = c(1, 3), attr = id) %>% get_node_df()
From a graph object of class dgr_graph
or a node data frame, set node
attribute properties for all nodes in the graph using one of several
whole-graph functions.
set_node_attr_w_fcn(graph, node_attr_fcn, ..., column_name = NULL)
set_node_attr_w_fcn(graph, node_attr_fcn, ..., column_name = NULL)
graph |
A graph object of class |
node_attr_fcn |
The name of the function to use for creating a column of
node attribute values. Valid functions are: |
... |
Arguments and values to pass to the named function in
|
column_name |
An option to supply a column name for the new node
attribute column. If |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attrs()
,
set_node_attrs_ws()
,
set_node_position()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 22, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the betweenness values for # each of the graph's nodes as a # node attribute graph_1 <- graph %>% set_node_attr_w_fcn( node_attr_fcn = "get_betweenness") # Inspect the graph's internal # node data frame graph_1 %>% get_node_df() # If a specified function takes argument # values, these can be supplied as well graph_2 <- graph %>% set_node_attr_w_fcn( node_attr_fcn = "get_alpha_centrality", alpha = 2, exo = 2) # Inspect the graph's internal # node data frame graph_2 %>% get_node_df() # The new column name can be provided graph_3 <- graph %>% set_node_attr_w_fcn( node_attr_fcn = "get_pagerank", column_name = "pagerank") # Inspect the graph's internal # node data frame graph_3 %>% get_node_df() # If `graph_3` is modified by # adding a new node then the column # `pagerank` will have stale data; we # can run the function again and re-use # the existing column name to provide # updated values graph_3 <- graph_3 %>% add_node( from = 1, to = 3) %>% set_node_attr_w_fcn( node_attr_fcn = "get_pagerank", column_name = "pagerank") # Inspect the graph's internal # node data frame graph_3 %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 22, set_seed = 23) %>% set_node_attrs( node_attr = value, values = rnorm( n = count_nodes(.), mean = 5, sd = 1) %>% round(1)) # Get the betweenness values for # each of the graph's nodes as a # node attribute graph_1 <- graph %>% set_node_attr_w_fcn( node_attr_fcn = "get_betweenness") # Inspect the graph's internal # node data frame graph_1 %>% get_node_df() # If a specified function takes argument # values, these can be supplied as well graph_2 <- graph %>% set_node_attr_w_fcn( node_attr_fcn = "get_alpha_centrality", alpha = 2, exo = 2) # Inspect the graph's internal # node data frame graph_2 %>% get_node_df() # The new column name can be provided graph_3 <- graph %>% set_node_attr_w_fcn( node_attr_fcn = "get_pagerank", column_name = "pagerank") # Inspect the graph's internal # node data frame graph_3 %>% get_node_df() # If `graph_3` is modified by # adding a new node then the column # `pagerank` will have stale data; we # can run the function again and re-use # the existing column name to provide # updated values graph_3 <- graph_3 %>% add_node( from = 1, to = 3) %>% set_node_attr_w_fcn( node_attr_fcn = "get_pagerank", column_name = "pagerank") # Inspect the graph's internal # node data frame graph_3 %>% get_node_df()
From a graph object of class dgr_graph
, set node attribute values for one
or more nodes.
set_node_attrs(graph, node_attr, values, nodes = NULL)
set_node_attrs(graph, node_attr, values, nodes = NULL)
graph |
A graph object of class |
node_attr |
The name of the attribute to set. Examples of attributes can be found in |
values |
The values to be set for the chosen attribute for the chosen nodes. |
nodes |
An optional vector of node IDs for filtering the list of nodes present in the graph. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs_ws()
,
set_node_position()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "basic", label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to") # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Set attribute `color = "green"` for # nodes `1` and `3` using the graph object graph <- graph %>% set_node_attrs( node_attr = color, values = "green", nodes = c(1, 3)) # View the graph's node data frame graph %>% get_node_df() # Set attribute `color = "blue"` for # all nodes in the graph graph <- graph %>% set_node_attrs( node_attr = color, values = "blue") # Display the graph's ndf graph %>% get_node_df()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "basic", label = TRUE, value = c(3.5, 2.6, 9.4, 2.7)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3), to = c(4, 3, 1), rel = "leading_to") # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Set attribute `color = "green"` for # nodes `1` and `3` using the graph object graph <- graph %>% set_node_attrs( node_attr = color, values = "green", nodes = c(1, 3)) # View the graph's node data frame graph %>% get_node_df() # Set attribute `color = "blue"` for # all nodes in the graph graph <- graph %>% set_node_attrs( node_attr = color, values = "blue") # Display the graph's ndf graph %>% get_node_df()
From a graph object of class dgr_graph
or a node data frame, set node
attribute properties for nodes present in a node selection.
This function makes use of an active selection of nodes (and the function
ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
set_node_attrs_ws(graph, node_attr, value)
set_node_attrs_ws(graph, node_attr, value)
graph |
A graph object of class |
node_attr |
The name of the attribute to set. |
value |
The value to be set for the chosen attribute for the nodes in the current selection. |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_position()
# Create a simple graph graph <- create_graph() %>% add_path(n = 6) # Select specific nodes from the graph and # apply the node attribute `color = blue` to # those selected nodes graph <- graph %>% select_nodes_by_id( nodes = 1:4) %>% trav_out() %>% set_node_attrs_ws( node_attr = color, value = "blue") # Show the internal node data frame to verify # that the node attribute has been set for # specific node graph %>% get_node_df()
# Create a simple graph graph <- create_graph() %>% add_path(n = 6) # Select specific nodes from the graph and # apply the node attribute `color = blue` to # those selected nodes graph <- graph %>% select_nodes_by_id( nodes = 1:4) %>% trav_out() %>% set_node_attrs_ws( node_attr = color, value = "blue") # Show the internal node data frame to verify # that the node attribute has been set for # specific node graph %>% get_node_df()
Apply position information for a single node. This is done by setting the x
and y
attrs for a node id
or node label
supplied in node
. When
rendering the graph, nodes with attribute values set for x
and y
will be
fixed to those positions on the graph canvas.
set_node_position(graph, node, x, y, use_labels = FALSE)
set_node_position(graph, node, x, y, use_labels = FALSE)
graph |
A graph object of class |
node |
A single-length vector containing either a node ID value (integer) or a node label (character) for which position information should be applied. |
x |
The x coordinate to set for the node. |
y |
The y coordinate to set for the node. |
use_labels |
An option to use a node |
A graph object of class dgr_graph
.
Other node creation and removal:
add_n_node_clones()
,
add_n_nodes()
,
add_n_nodes_ws()
,
add_node()
,
add_node_clones_ws()
,
add_node_df()
,
add_nodes_from_df_cols()
,
add_nodes_from_table()
,
colorize_node_attrs()
,
copy_node_attrs()
,
create_node_df()
,
delete_node()
,
delete_nodes_ws()
,
drop_node_attrs()
,
join_node_attrs()
,
layout_nodes_w_string()
,
mutate_node_attrs()
,
mutate_node_attrs_ws()
,
node_data()
,
recode_node_attrs()
,
rename_node_attrs()
,
rescale_node_attrs()
,
set_node_attr_to_display()
,
set_node_attr_w_fcn()
,
set_node_attrs()
,
set_node_attrs_ws()
# Create a simple graph with 4 nodes graph <- create_graph() %>% add_node(label = "one") %>% add_node(label = "two") %>% add_node(label = "three") %>% add_node(label = "four") # Add position information to each of # the graph's nodes graph <- graph %>% set_node_position( node = 1, x = 1, y = 1) %>% set_node_position( node = 2, x = 2, y = 2) %>% set_node_position( node = 3, x = 3, y = 3) %>% set_node_position( node = 4, x = 4, y = 4) # View the graph's node data frame to # verify that the `x` and `y` node # attributes are available and set to # the values provided graph %>% get_node_df() # The same function can modify the data # in the `x` and `y` attributes graph <- graph %>% set_node_position( node = 1, x = 1, y = 4) %>% set_node_position( node = 2, x = 3, y = 3) %>% set_node_position( node = 3, x = 3, y = 2) %>% set_node_position( node = 4, x = 4, y = 1) # View the graph's node data frame graph %>% get_node_df() # Position changes can also be made by # supplying a node `label` value (and setting # `use_labels` to TRUE). For this to work, # all `label` values in the graph's ndf must # be unique and non-NA graph <- graph %>% set_node_position( node = "one", x = 1, y = 1, use_labels = TRUE) %>% set_node_position( node = "two", x = 2, y = 2, use_labels = TRUE) # View the graph's node data frame graph %>% get_node_df()
# Create a simple graph with 4 nodes graph <- create_graph() %>% add_node(label = "one") %>% add_node(label = "two") %>% add_node(label = "three") %>% add_node(label = "four") # Add position information to each of # the graph's nodes graph <- graph %>% set_node_position( node = 1, x = 1, y = 1) %>% set_node_position( node = 2, x = 2, y = 2) %>% set_node_position( node = 3, x = 3, y = 3) %>% set_node_position( node = 4, x = 4, y = 4) # View the graph's node data frame to # verify that the `x` and `y` node # attributes are available and set to # the values provided graph %>% get_node_df() # The same function can modify the data # in the `x` and `y` attributes graph <- graph %>% set_node_position( node = 1, x = 1, y = 4) %>% set_node_position( node = 2, x = 3, y = 3) %>% set_node_position( node = 3, x = 3, y = 2) %>% set_node_position( node = 4, x = 4, y = 1) # View the graph's node data frame graph %>% get_node_df() # Position changes can also be made by # supplying a node `label` value (and setting # `use_labels` to TRUE). For this to work, # all `label` values in the graph's ndf must # be unique and non-NA graph <- graph %>% set_node_position( node = "one", x = 1, y = 1, use_labels = TRUE) %>% set_node_position( node = "two", x = 2, y = 2, use_labels = TRUE) # View the graph's node data frame graph %>% get_node_df()
Convert a DiagrammeR graph to an igraph graph object.
to_igraph(graph)
to_igraph(graph)
graph |
A graph object of class |
An igraph object.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 36, m = 50, set_seed = 23) # Confirm that `graph` is a # DiagrammeR graph by getting # the object's class class(graph) # Convert the DiagrammeR graph # to an igraph object ig_graph <- to_igraph(graph) # Get the class of the converted # graph, just to be certain class(ig_graph) # Get a summary of the igraph # graph object summary(ig_graph)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 36, m = 50, set_seed = 23) # Confirm that `graph` is a # DiagrammeR graph by getting # the object's class class(graph) # Convert the DiagrammeR graph # to an igraph object ig_graph <- to_igraph(graph) # Get the class of the converted # graph, just to be certain class(ig_graph) # Get a summary of the igraph # graph object summary(ig_graph)
Create a complement graph which contains only edges not present in the input graph. It's important to nodes that any edge attributes in the input graph's edges will be lost. Node attributes will be retained, since they are not affected by this transformation.
transform_to_complement_graph(graph, loops = FALSE)
transform_to_complement_graph(graph, loops = FALSE)
graph |
A graph object of class |
loops |
An option for whether loops should be generated in the complement graph. |
a graph object of class dgr_graph
.
# Create a simple graph # with a single cycle graph <- create_graph() %>% add_cycle(n = 4) # Get the graph's edge # data frame graph %>% get_edge_df() # Create the complement # of the graph graph_c <- graph %>% transform_to_complement_graph() # Get the edge data frame # for the complement graph graph_c %>% get_edge_df()
# Create a simple graph # with a single cycle graph <- create_graph() %>% add_cycle(n = 4) # Get the graph's edge # data frame graph %>% get_edge_df() # Create the complement # of the graph graph_c <- graph %>% transform_to_complement_graph() # Get the edge data frame # for the complement graph graph_c %>% get_edge_df()
Get a minimum spanning tree subgraph for a connected graph of class
dgr_graph
.
transform_to_min_spanning_tree(graph)
transform_to_min_spanning_tree(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Obtain Jaccard similarity # values for each pair of # nodes as a square matrix j_sim_matrix <- graph %>% get_jaccard_similarity() # Create a weighted, undirected # graph from the resultant matrix # (effectively treating that # matrix as an adjacency matrix) graph <- j_sim_matrix %>% from_adj_matrix(weighted = TRUE) # The graph in this case is a fully connected graph # with loops, where jaccard similarity values are # assigned as edge weights (edge attribute `weight`); # The minimum spanning tree for this graph is the # connected subgraph where the edges retained have # the lowest similarity values possible min_spanning_tree_graph <- graph %>% transform_to_min_spanning_tree() %>% copy_edge_attrs( edge_attr_from = weight, edge_attr_to = label) %>% set_edge_attrs( edge_attr = fontname, values = "Helvetica") %>% set_edge_attrs( edge_attr = color, values = "gray85") %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = 0.5, to_upper_bound = 4.0, edge_attr_to = penwidth)
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 10, m = 15, set_seed = 23) # Obtain Jaccard similarity # values for each pair of # nodes as a square matrix j_sim_matrix <- graph %>% get_jaccard_similarity() # Create a weighted, undirected # graph from the resultant matrix # (effectively treating that # matrix as an adjacency matrix) graph <- j_sim_matrix %>% from_adj_matrix(weighted = TRUE) # The graph in this case is a fully connected graph # with loops, where jaccard similarity values are # assigned as edge weights (edge attribute `weight`); # The minimum spanning tree for this graph is the # connected subgraph where the edges retained have # the lowest similarity values possible min_spanning_tree_graph <- graph %>% transform_to_min_spanning_tree() %>% copy_edge_attrs( edge_attr_from = weight, edge_attr_to = label) %>% set_edge_attrs( edge_attr = fontname, values = "Helvetica") %>% set_edge_attrs( edge_attr = color, values = "gray85") %>% rescale_edge_attrs( edge_attr_from = weight, to_lower_bound = 0.5, to_upper_bound = 4.0, edge_attr_to = penwidth)
Create a subgraph based on a selection of nodes or edges stored in the graph object.
This function makes use of an active selection of nodes or edges (and the
function ending with _ws
hints at this).
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of edges can be performed using the following edge selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of nodes or edges can also be performed using the following
traversal (trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, trav_in_until()
,
trav_out_edge()
, trav_in_edge()
, trav_both_edge()
, or
trav_reverse_edge()
.
transform_to_subgraph_ws(graph)
transform_to_subgraph_ws(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 6, value = c(3.5, 2.6, 9.4, 2.7, 5.2, 2.1)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 4, 5, 2, 6, 2), to = c(2, 4, 1, 3, 5, 5, 4)) # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Create a selection of nodes, this selects # nodes `1`, `3`, and `5` graph <- graph %>% select_nodes( conditions = value > 3) # Create a subgraph based on the selection subgraph <- graph %>% transform_to_subgraph_ws() # Display the graph's node data frame subgraph %>% get_node_df() # Display the graph's edge data frame subgraph %>% get_edge_df() # Create a selection of edges, this selects # edges `1`, `2` graph <- graph %>% clear_selection() %>% select_edges( edges = c(1,2)) # Create a subgraph based on the selection subgraph <- graph %>% transform_to_subgraph_ws() # Display the graph's node data frame subgraph %>% get_node_df() # Display the graph's edge data frame subgraph %>% get_edge_df()
# Create a node data frame (ndf) ndf <- create_node_df( n = 6, value = c(3.5, 2.6, 9.4, 2.7, 5.2, 2.1)) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 4, 5, 2, 6, 2), to = c(2, 4, 1, 3, 5, 5, 4)) # Create a graph graph <- create_graph( nodes_df = ndf, edges_df = edf) # Create a selection of nodes, this selects # nodes `1`, `3`, and `5` graph <- graph %>% select_nodes( conditions = value > 3) # Create a subgraph based on the selection subgraph <- graph %>% transform_to_subgraph_ws() # Display the graph's node data frame subgraph %>% get_node_df() # Display the graph's edge data frame subgraph %>% get_edge_df() # Create a selection of edges, this selects # edges `1`, `2` graph <- graph %>% clear_selection() %>% select_edges( edges = c(1,2)) # Create a subgraph based on the selection subgraph <- graph %>% transform_to_subgraph_ws() # Display the graph's node data frame subgraph %>% get_node_df() # Display the graph's edge data frame subgraph %>% get_edge_df()
From a graph object of class dgr_graph
move from one or more nodes present
in a selection to other nodes that are connected by edges, replacing the
current nodes in the selection with those nodes traversed to. An optional
filter by node attribute can limit the set of nodes traversed to.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_both( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE )
trav_both( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing a node attribute name will copy those node attribute values to the traversed nodes. Any values extant on the nodes traversed to will be replaced. |
copy_attrs_as |
If a node attribute name is provided in
|
agg |
If a node attribute is provided to |
add_to_selection |
An option to either add the traversed to nodes to the
active selection of nodes ( |
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from node `3` # to adjacent nodes with no conditions on # the nodes traversed to graph %>% select_nodes_by_id(nodes = 3) %>% trav_both() %>% get_selection() # Traverse from node `2` to any adjacent # nodes, filtering to those nodes that have # numeric values less than `8.0` for # the `values` node attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = values < 8.0) %>% get_selection() # Traverse from node `5` to any adjacent # nodes, filtering to those nodes that # have a `type` attribute of `b` graph %>% select_nodes_by_id(nodes = 5) %>% trav_both( conditions = type == "b") %>% get_selection() # Traverse from node `2` to any adjacent # nodes, and use multiple conditions for the # traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = type == "a" & values > 8.0) %>% get_selection() # Traverse from node `2` to any adjacent # nodes, and use multiple conditions with # a single-length vector graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = type == "a" | values > 8.0) %>% get_selection() # Traverse from node `2` to any adjacent # nodes, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = grepl("..d", label)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # nodes graph <- create_graph() %>% add_path(n = 5) %>% select_nodes_by_id(nodes = c(2, 4)) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a traversal from the inner nodes # (`2` and `4`) to their adjacent nodes (`1`, # `3`, and `5`) while also applying the node # attribute `value` to target nodes; node `3` # will obtain a `value` of 10 since a traversal # to `3` will occur from `2` and `4` (and # multiple values passed will be summed) graph <- graph %>% trav_both( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from node `3` # to adjacent nodes with no conditions on # the nodes traversed to graph %>% select_nodes_by_id(nodes = 3) %>% trav_both() %>% get_selection() # Traverse from node `2` to any adjacent # nodes, filtering to those nodes that have # numeric values less than `8.0` for # the `values` node attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = values < 8.0) %>% get_selection() # Traverse from node `5` to any adjacent # nodes, filtering to those nodes that # have a `type` attribute of `b` graph %>% select_nodes_by_id(nodes = 5) %>% trav_both( conditions = type == "b") %>% get_selection() # Traverse from node `2` to any adjacent # nodes, and use multiple conditions for the # traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = type == "a" & values > 8.0) %>% get_selection() # Traverse from node `2` to any adjacent # nodes, and use multiple conditions with # a single-length vector graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = type == "a" | values > 8.0) %>% get_selection() # Traverse from node `2` to any adjacent # nodes, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_both( conditions = grepl("..d", label)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # nodes graph <- create_graph() %>% add_path(n = 5) %>% select_nodes_by_id(nodes = c(2, 4)) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a traversal from the inner nodes # (`2` and `4`) to their adjacent nodes (`1`, # `3`, and `5`) while also applying the node # attribute `value` to target nodes; node `3` # will obtain a `value` of 10 since a traversal # to `3` will occur from `2` and `4` (and # multiple values passed will be summed) graph <- graph %>% trav_both( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
From a graph object of class dgr_graph
move to adjacent edges from a
selection of one or more selected nodes, thereby creating a selection of
edges. An optional filter by edge attribute can limit the set of edges
traversed to.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of edges or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_both_edge( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum" )
trav_both_edge( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum" )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing a node attribute name will copy those node attribute values to the traversed edges. If the edge attribute already exists, the values will be merged to the traversed edges; otherwise, a new edge attribute will be created. |
copy_attrs_as |
If a node attribute name is provided in
|
agg |
If a node attribute is provided to |
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df) # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from nodes to # adjacent edges with no conditions on the # nodes traversed to graph %>% select_nodes_by_id(nodes = 3) %>% trav_both_edge() %>% get_selection() # Traverse from node `2` to any adjacent # edges, filtering to those edges that have # NA values for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = is.na(rel)) %>% get_selection() # Traverse from node `2` to any adjacent # edges, filtering to those edges that have # numeric values greater than `6.5` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = values > 6.5) %>% get_selection() # Traverse from node `5` to any adjacent # edges, filtering to those edges that # have values equal to `C` for the `rel` # edge attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_both_edge( conditions = rel == "C") %>% get_selection() # Traverse from node `2` to any adjacent # edges, filtering to those edges that # have values in the set `B` and `C` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = rel %in% c("B", "C")) %>% get_selection() # Traverse from node `2` to any adjacent # edges, and use multiple conditions for the # traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = rel %in% c("B", "C") & values > 4.0) %>% get_selection() # Traverse from node `2` to any adjacent # edges, and use multiple conditions with # a single-length vector graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = rel %in% c("B", "C") | values > 4.0) %>% get_selection() # Traverse from node `2` to any adjacent # edges, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = grepl("B|C", rel)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # edges graph <- create_graph() %>% add_path(n = 4) %>% select_nodes_by_id(nodes = 2:3) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal edge data frame graph %>%get_edge_df() # Show the graph's internal node data frame graph %>% get_node_df() # Perform a traversal from the nodes to # the adjacent edges while also applying # the node attribute `value` to the edges (in # this case summing the `value` of 5 from # all contributing nodes adding as an edge # attribute) graph <- graph %>% trav_both_edge( copy_attrs_from = value, agg = "sum") # Show the graph's internal edge data frame # after this change graph %>% get_edge_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df) # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from nodes to # adjacent edges with no conditions on the # nodes traversed to graph %>% select_nodes_by_id(nodes = 3) %>% trav_both_edge() %>% get_selection() # Traverse from node `2` to any adjacent # edges, filtering to those edges that have # NA values for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = is.na(rel)) %>% get_selection() # Traverse from node `2` to any adjacent # edges, filtering to those edges that have # numeric values greater than `6.5` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = values > 6.5) %>% get_selection() # Traverse from node `5` to any adjacent # edges, filtering to those edges that # have values equal to `C` for the `rel` # edge attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_both_edge( conditions = rel == "C") %>% get_selection() # Traverse from node `2` to any adjacent # edges, filtering to those edges that # have values in the set `B` and `C` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = rel %in% c("B", "C")) %>% get_selection() # Traverse from node `2` to any adjacent # edges, and use multiple conditions for the # traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = rel %in% c("B", "C") & values > 4.0) %>% get_selection() # Traverse from node `2` to any adjacent # edges, and use multiple conditions with # a single-length vector graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = rel %in% c("B", "C") | values > 4.0) %>% get_selection() # Traverse from node `2` to any adjacent # edges, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_both_edge( conditions = grepl("B|C", rel)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # edges graph <- create_graph() %>% add_path(n = 4) %>% select_nodes_by_id(nodes = 2:3) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal edge data frame graph %>%get_edge_df() # Show the graph's internal node data frame graph %>% get_node_df() # Perform a traversal from the nodes to # the adjacent edges while also applying # the node attribute `value` to the edges (in # this case summing the `value` of 5 from # all contributing nodes adding as an edge # attribute) graph <- graph %>% trav_both_edge( copy_attrs_from = value, agg = "sum") # Show the graph's internal edge data frame # after this change graph %>% get_edge_df()
From a graph object of class dgr_graph
move along inward edges from one or
more nodes present in a selection to other connected nodes, replacing the
current nodes in the selection with those nodes traversed to. An optional
filter by node attribute can limit the set of nodes traversed to.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_in( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE )
trav_in( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
providing a node attribute name will copy those node attribute values to the traversed nodes. Any values extant on the nodes traversed to will be replaced. |
copy_attrs_as |
If a node attribute name is provided in
|
agg |
If a node attribute is provided to |
add_to_selection |
An option to either add the traversed to nodes to the
active selection of nodes ( |
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from node `4` to # inward adjacent edges with no conditions # on the nodes traversed to graph %>% select_nodes_by_id(nodes = 4) %>% trav_in() %>% get_selection() # Traverse from node `5` to inbound-facing # nodes, filtering to those nodes that have # numeric values greater than `5.0` for # the `values` node attribute graph %>% select_nodes_by_id(nodes = 4) %>% trav_in( conditions = values > 5.0) %>% get_selection() # Traverse from node `5` to any inbound # nodes, filtering to those nodes that # have a `type` attribute of `b` graph %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = type == "b") %>% get_selection() # Traverse from node `5` to any inbound # nodes, filtering to those nodes that # have a degree of `2` graph %>% { node_degrees <- get_node_info(.) %>% dplyr::select(id, deg) join_node_attrs(., node_degrees) } %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = deg == 2) %>% get_selection() # Traverse from node `5` to any inbound # nodes, and use multiple conditions for the # traversal graph %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = type == "a" & values > 6.0) %>% get_selection() # Traverse from node `5` to any inbound # nodes, and use multiple conditions with # a single-length vector graph %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = type == "b" | values > 6.0) %>% get_selection() # Traverse from node `5` to any inbound # nodes, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_in( conditions = grepl("^i.*", label)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "from") %>% clear_selection() %>% select_nodes_by_id(nodes = 2:3) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a traversal from the outer nodes # (`2` and `3`) to the central node (`1`) while # also applying the node attribute `value` to # node `1` (summing the `value` of 5 from # both nodes before applying the value to the # target node) graph <- graph %>% trav_in( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from node `4` to # inward adjacent edges with no conditions # on the nodes traversed to graph %>% select_nodes_by_id(nodes = 4) %>% trav_in() %>% get_selection() # Traverse from node `5` to inbound-facing # nodes, filtering to those nodes that have # numeric values greater than `5.0` for # the `values` node attribute graph %>% select_nodes_by_id(nodes = 4) %>% trav_in( conditions = values > 5.0) %>% get_selection() # Traverse from node `5` to any inbound # nodes, filtering to those nodes that # have a `type` attribute of `b` graph %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = type == "b") %>% get_selection() # Traverse from node `5` to any inbound # nodes, filtering to those nodes that # have a degree of `2` graph %>% { node_degrees <- get_node_info(.) %>% dplyr::select(id, deg) join_node_attrs(., node_degrees) } %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = deg == 2) %>% get_selection() # Traverse from node `5` to any inbound # nodes, and use multiple conditions for the # traversal graph %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = type == "a" & values > 6.0) %>% get_selection() # Traverse from node `5` to any inbound # nodes, and use multiple conditions with # a single-length vector graph %>% select_nodes_by_id(nodes = 5) %>% trav_in( conditions = type == "b" | values > 6.0) %>% get_selection() # Traverse from node `5` to any inbound # nodes, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_in( conditions = grepl("^i.*", label)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "from") %>% clear_selection() %>% select_nodes_by_id(nodes = 2:3) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a traversal from the outer nodes # (`2` and `3`) to the central node (`1`) while # also applying the node attribute `value` to # node `1` (summing the `value` of 5 from # both nodes before applying the value to the # target node) graph <- graph %>% trav_in( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
From a graph object of class dgr_graph
move to incoming edges from a
selection of one or more selected nodes, thereby creating a selection of
edges. An optional filter by edge attribute can limit the set of edges
traversed to.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of edges or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_in_edge( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL )
trav_in_edge( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing a node attribute name will copy those node attribute values to the traversed edges. If the edge attribute already exists, the values will be merged to the traversed edges; otherwise, a new edge attribute will be created. |
copy_attrs_as |
If a node attribute name is provided in
|
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID # values representing the graph edges # (with `from` and `to` columns), and, # a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Join the data frame to the graph's # internal edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df) # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from # nodes to inbound edges with no # conditions on the nodes # traversed to graph %>% select_nodes_by_id(nodes = 2) %>% trav_in_edge() %>% get_selection() # Traverse from node `2` to any # inbound edges, filtering to # those edges that have NA values # for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_in_edge( conditions = is.na(rel)) %>% get_selection() # Traverse from node `2` to any # inbound edges, filtering to those # edges that do not have NA values # for the `rel` edge attribute # (since there are no allowed # traversals, the selection of node # `2` is retained) graph %>% select_nodes_by_id(nodes = 2) %>% trav_in_edge( conditions = !is.na(rel)) %>% get_selection() # Traverse from node `5` to any # inbound edges, filtering to those # edges that have numeric values # greater than `5.5` for the `rel` # edge attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = values > 5.5) %>% get_selection() # Traverse from node `5` to any # inbound edges, filtering to those # edges that have values equal to # `D` for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel == "D") %>% get_selection() # Traverse from node `5` to any # inbound edges, filtering to those # edges that have values in the set # `C` and `D` for the `rel` edge # attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel %in% c("C", "D")) %>% get_selection() # Traverse from node `5` to any # inbound edges, and use multiple # conditions for the traversal graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel %in% c("C", "D") & values > 5.5) %>% get_selection() # Traverse from node `5` to any # inbound edges, and use multiple # conditions with a single-length # vector graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel %in% c("D", "E") | values > 5.5) %>% get_selection() # Traverse from node `5` to any # inbound edges, and use a regular # expression as a filtering condition graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = grepl("C|D", rel)) %>% get_selection() # Show the graph's internal ndf graph %>% get_node_df() # Show the graph's internal edf graph %>% get_edge_df() # Perform a traversal from all # nodes to their incoming edges and, # while doing so, copy the `label` # node attribute to any of the nodes' # incoming edges graph <- graph %>% select_nodes() %>% trav_in_edge( copy_attrs_from = label) # Show the graph's internal edge # data frame after this change graph %>% get_edge_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID # values representing the graph edges # (with `from` and `to` columns), and, # a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Join the data frame to the graph's # internal edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df) # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from # nodes to inbound edges with no # conditions on the nodes # traversed to graph %>% select_nodes_by_id(nodes = 2) %>% trav_in_edge() %>% get_selection() # Traverse from node `2` to any # inbound edges, filtering to # those edges that have NA values # for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_in_edge( conditions = is.na(rel)) %>% get_selection() # Traverse from node `2` to any # inbound edges, filtering to those # edges that do not have NA values # for the `rel` edge attribute # (since there are no allowed # traversals, the selection of node # `2` is retained) graph %>% select_nodes_by_id(nodes = 2) %>% trav_in_edge( conditions = !is.na(rel)) %>% get_selection() # Traverse from node `5` to any # inbound edges, filtering to those # edges that have numeric values # greater than `5.5` for the `rel` # edge attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = values > 5.5) %>% get_selection() # Traverse from node `5` to any # inbound edges, filtering to those # edges that have values equal to # `D` for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel == "D") %>% get_selection() # Traverse from node `5` to any # inbound edges, filtering to those # edges that have values in the set # `C` and `D` for the `rel` edge # attribute graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel %in% c("C", "D")) %>% get_selection() # Traverse from node `5` to any # inbound edges, and use multiple # conditions for the traversal graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel %in% c("C", "D") & values > 5.5) %>% get_selection() # Traverse from node `5` to any # inbound edges, and use multiple # conditions with a single-length # vector graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = rel %in% c("D", "E") | values > 5.5) %>% get_selection() # Traverse from node `5` to any # inbound edges, and use a regular # expression as a filtering condition graph %>% select_nodes_by_id(nodes = 5) %>% trav_in_edge( conditions = grepl("C|D", rel)) %>% get_selection() # Show the graph's internal ndf graph %>% get_node_df() # Show the graph's internal edf graph %>% get_edge_df() # Perform a traversal from all # nodes to their incoming edges and, # while doing so, copy the `label` # node attribute to any of the nodes' # incoming edges graph <- graph %>% select_nodes() %>% trav_in_edge( copy_attrs_from = label) # Show the graph's internal edge # data frame after this change graph %>% get_edge_df()
From a graph object of class dgr_graph
with an active selection of edges
move with the edge direction to connected nodes, replacing the current edges
in the selection with those nodes traversed to. An optional filter by node
attribute can limit the set of nodes traversed to.
This traversal function makes use of an active selection of edges. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
trav_in_node( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum" )
trav_in_node( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum" )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing an edge attribute name will copy those edge attribute values to the traversed nodes. If the edge attribute already exists, the values will be merged to the traversed nodes; otherwise, a new node attribute will be created. |
copy_attrs_as |
If an edge attribute name is provided in
|
agg |
If an edge attribute is provided to |
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from the # edge `1`->`3` to the attached node # in the direction of the edge; here, no # conditions are placed on the nodes # traversed to graph %>% select_edges( from = 1, to = 3) %>% trav_in_node() %>% get_selection() # Traverse from edges `2`->`5` and # `3`->`5` to the attached node along # the direction of the edge; both # traversals lead to the same node graph %>% select_edges( from = 2, to = 5) %>% select_edges( from = 3, to = 5) %>% trav_in_node() %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is incoming, this time filtering # numeric values greater than `5.0` for # the `values` node attribute graph %>% select_edges( from = 1, to = 3) %>% trav_in_node( conditions = values > 5.0) %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is incoming, this time filtering # numeric values less than `5.0` for # the `values` node attribute (the # condition is not met so the original # selection of edge `1` -> `3` remains) graph %>% select_edges( from = 1, to = 3) %>% trav_in_node( conditions = values < 5.0) %>% get_selection() # Traverse from the edge `1`->`2` to # the node `2` using multiple conditions # with a single-length vector graph %>% select_edges( from = 1, to = 2) %>% trav_in_node( conditions = grepl(".*d$", label) | values < 6.0) %>% get_selection() # Create another simple graph to demonstrate # copying of edge attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "to") %>% clear_selection() %>% select_nodes_by_id(nodes = 2) %>% set_node_attrs_ws( node_attr = value, value = 8) %>% clear_selection() %>% select_edges_by_edge_id(edges = 1) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges_by_edge_id(edges = 2) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges() # Show the graph's internal edge data frame graph %>% get_edge_df() # Show the graph's internal node data frame graph %>% get_node_df() # Perform a traversal from the edges to # the central node (`1`) while also applying # the edge attribute `value` to the node (in # this case summing the `value` of 5 from # both edges before adding as a node attribute) graph <- graph %>% trav_in_node( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from the # edge `1`->`3` to the attached node # in the direction of the edge; here, no # conditions are placed on the nodes # traversed to graph %>% select_edges( from = 1, to = 3) %>% trav_in_node() %>% get_selection() # Traverse from edges `2`->`5` and # `3`->`5` to the attached node along # the direction of the edge; both # traversals lead to the same node graph %>% select_edges( from = 2, to = 5) %>% select_edges( from = 3, to = 5) %>% trav_in_node() %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is incoming, this time filtering # numeric values greater than `5.0` for # the `values` node attribute graph %>% select_edges( from = 1, to = 3) %>% trav_in_node( conditions = values > 5.0) %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is incoming, this time filtering # numeric values less than `5.0` for # the `values` node attribute (the # condition is not met so the original # selection of edge `1` -> `3` remains) graph %>% select_edges( from = 1, to = 3) %>% trav_in_node( conditions = values < 5.0) %>% get_selection() # Traverse from the edge `1`->`2` to # the node `2` using multiple conditions # with a single-length vector graph %>% select_edges( from = 1, to = 2) %>% trav_in_node( conditions = grepl(".*d$", label) | values < 6.0) %>% get_selection() # Create another simple graph to demonstrate # copying of edge attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "to") %>% clear_selection() %>% select_nodes_by_id(nodes = 2) %>% set_node_attrs_ws( node_attr = value, value = 8) %>% clear_selection() %>% select_edges_by_edge_id(edges = 1) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges_by_edge_id(edges = 2) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges() # Show the graph's internal edge data frame graph %>% get_edge_df() # Show the graph's internal node data frame graph %>% get_node_df() # Perform a traversal from the edges to # the central node (`1`) while also applying # the edge attribute `value` to the node (in # this case summing the `value` of 5 from # both edges before adding as a node attribute) graph <- graph %>% trav_in_node( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
From a graph object of class dgr_graph
, move along inward edges from one or
more nodes present in a selection to other connected nodes, replacing the
current nodes in the selection with those nodes traversed to until reaching
nodes that satisfy one or more conditions.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_in_until( graph, conditions, max_steps = 30, exclude_unmatched = TRUE, add_to_selection = FALSE )
trav_in_until( graph, conditions, max_steps = 30, exclude_unmatched = TRUE, add_to_selection = FALSE )
graph |
A graph object of class |
conditions |
An option to use a stopping condition for the traversal. If
the condition is met during the traversal (i.e., the node(s) traversed to
match the condition), then those traversals will terminate at those nodes.
Otherwise, traversals with continue and terminate when the number of steps
provided in |
max_steps |
The maximum number of |
exclude_unmatched |
If |
add_to_selection |
If |
A graph object of class dgr_graph
.
# Create a path graph and add # values of 1 to 10 across the # nodes from beginning to end; # select the last path node graph <- create_graph() %>% add_path( n = 10, node_data = node_data( value = 1:10)) %>% select_nodes_by_id( nodes = 10) # Traverse inward, node-by-node # until stopping at a node where # the `value` attribute is 1 graph <- graph %>% trav_in_until( conditions = value == 1) # Get the graph's node selection graph %>% get_selection() # Create two cycles in a graph and # add values of 1 to 6 to the # first cycle, and values 7 to # 12 in the second; select nodes # `6` and `12` graph <- create_graph() %>% add_cycle( n = 6, node_data = node_data( value = 1:6)) %>% add_cycle( n = 6, node_data = node_data( value = 7:12)) %>% select_nodes_by_id( nodes = c(6, 12)) # Traverse inward, node-by-node # from `6` and `12` until stopping # at the first nodes where the # `value` attribute is 1, 2, or 10; # specify that we should only # keep the finally traversed to # nodes that satisfy the conditions graph <- graph %>% trav_in_until( conditions = value %in% c(1, 2, 10), exclude_unmatched = TRUE) # Get the graph's node selection graph %>% get_selection()
# Create a path graph and add # values of 1 to 10 across the # nodes from beginning to end; # select the last path node graph <- create_graph() %>% add_path( n = 10, node_data = node_data( value = 1:10)) %>% select_nodes_by_id( nodes = 10) # Traverse inward, node-by-node # until stopping at a node where # the `value` attribute is 1 graph <- graph %>% trav_in_until( conditions = value == 1) # Get the graph's node selection graph %>% get_selection() # Create two cycles in a graph and # add values of 1 to 6 to the # first cycle, and values 7 to # 12 in the second; select nodes # `6` and `12` graph <- create_graph() %>% add_cycle( n = 6, node_data = node_data( value = 1:6)) %>% add_cycle( n = 6, node_data = node_data( value = 7:12)) %>% select_nodes_by_id( nodes = c(6, 12)) # Traverse inward, node-by-node # from `6` and `12` until stopping # at the first nodes where the # `value` attribute is 1, 2, or 10; # specify that we should only # keep the finally traversed to # nodes that satisfy the conditions graph <- graph %>% trav_in_until( conditions = value %in% c(1, 2, 10), exclude_unmatched = TRUE) # Get the graph's node selection graph %>% get_selection()
From a graph object of class dgr_graph
move along outward edges from one or
more nodes present in a selection to other connected nodes, replacing the
current nodes in the selection with those nodes traversed to. An optional
filter by node attribute can limit the set of nodes traversed to.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_out( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE )
trav_out( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing a node attribute name will copy those node attribute values to the traversed nodes. Any values extant on the nodes traversed to will be replaced. |
copy_attrs_as |
If a node attribute name is provided in
|
agg |
If a node attribute is provided to |
add_to_selection |
An option to either add the traversed to nodes to the
active selection of nodes ( |
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from node `3` # to outward adjacent nodes with no conditions # on the nodes traversed to graph %>% select_nodes_by_id(nodes = 3) %>% trav_out() %>% get_selection() # Traverse from node `1` to outbound # nodes, filtering to those nodes that have # numeric values greater than `7.0` for # the `values` node attribute graph %>% select_nodes_by_id(nodes = 1) %>% trav_out( conditions = values > 7.0) %>% get_selection() # Traverse from node `1` to any outbound # nodes, filtering to those nodes that # have a `type` attribute of `b` graph %>% select_nodes_by_id(nodes = 1) %>% trav_out( conditions = type == "b") %>% get_selection() # Traverse from node `2` to any outbound # nodes, filtering to those nodes that # have a degree of `1` graph %>% { node_degrees <- get_node_info(.) %>% dplyr::select(id, deg) join_node_attrs( graph = ., df = node_degrees) } %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = deg == 1) %>% get_selection() # Traverse from node `2` to any outbound # nodes, and use multiple conditions for # the traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = type == "a" & values > 8.0) %>% get_selection() # Traverse from node `2` to any # outbound nodes, and use multiple # conditions with a single-length vector graph %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = type == "b" | values > 8.0) %>% get_selection() # Traverse from node `2` to any outbound # nodes, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = grepl("..d", label)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "to") %>% clear_selection() %>% select_nodes_by_id(nodes = 2:3) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a traversal from the outer nodes # (`2` and `3`) to the central node (`1`) while # also applying the node attribute `value` to # node `1` (summing the `value` of 5 from # both nodes before applying that value to the # target node) graph <- graph %>% trav_out( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data # frame after this change graph %>% get_node_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from node `3` # to outward adjacent nodes with no conditions # on the nodes traversed to graph %>% select_nodes_by_id(nodes = 3) %>% trav_out() %>% get_selection() # Traverse from node `1` to outbound # nodes, filtering to those nodes that have # numeric values greater than `7.0` for # the `values` node attribute graph %>% select_nodes_by_id(nodes = 1) %>% trav_out( conditions = values > 7.0) %>% get_selection() # Traverse from node `1` to any outbound # nodes, filtering to those nodes that # have a `type` attribute of `b` graph %>% select_nodes_by_id(nodes = 1) %>% trav_out( conditions = type == "b") %>% get_selection() # Traverse from node `2` to any outbound # nodes, filtering to those nodes that # have a degree of `1` graph %>% { node_degrees <- get_node_info(.) %>% dplyr::select(id, deg) join_node_attrs( graph = ., df = node_degrees) } %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = deg == 1) %>% get_selection() # Traverse from node `2` to any outbound # nodes, and use multiple conditions for # the traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = type == "a" & values > 8.0) %>% get_selection() # Traverse from node `2` to any # outbound nodes, and use multiple # conditions with a single-length vector graph %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = type == "b" | values > 8.0) %>% get_selection() # Traverse from node `2` to any outbound # nodes, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_out( conditions = grepl("..d", label)) %>% get_selection() # Create another simple graph to demonstrate # copying of node attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "to") %>% clear_selection() %>% select_nodes_by_id(nodes = 2:3) %>% set_node_attrs_ws( node_attr = value, value = 5) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a traversal from the outer nodes # (`2` and `3`) to the central node (`1`) while # also applying the node attribute `value` to # node `1` (summing the `value` of 5 from # both nodes before applying that value to the # target node) graph <- graph %>% trav_out( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data # frame after this change graph %>% get_node_df()
From a graph object of class dgr_graph
move to outgoing edges from a
selection of one or more selected nodes, thereby creating a selection of
edges. An optional filter by edge attribute can limit the set of edges
traversed to.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of edges or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_out_edge( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL )
trav_out_edge( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing a node attribute name will copy those node attribute values to the traversed edges. If the edge attribute already exists, the values will be merged to the traversed edges; otherwise, a new edge attribute will be created. |
copy_attrs_as |
If a node attribute name is provided in
|
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) %>% set_node_attrs( node_attr = values, values = c(2.3, 4.7, 9.4, 8.3, 6.3)) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs( df = df) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from nodes to # outbound edges with no conditions on the # nodes traversed to graph %>% select_nodes_by_id(nodes = 1) %>% trav_out_edge() %>% get_selection() # Traverse from node `1` to any outbound # edges, filtering to those edges that have # NA values for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 1) %>% trav_out_edge( conditions = is.na(rel)) %>% get_selection() # Traverse from node `3` to any outbound # edges, filtering to those edges that have # numeric values greater than `5.0` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 3) %>% trav_out_edge( conditions = values > 5.0) %>% get_selection() # Traverse from node `1` to any outbound # edges, filtering to those edges that # have values equal to `A` for the `rel` # edge attribute graph %>% select_nodes_by_id(nodes = 1) %>% trav_out_edge( conditions = rel == "A") %>% get_selection() # Traverse from node `2` to any outbound # edges, filtering to those edges that # have values in the set `B` and `C` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = rel %in% c("B", "C")) %>% get_selection() # Traverse from node `2` to any # outbound edges, and use multiple # conditions for the traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = rel %in% c("B", "C") & values >= 5.0) %>% get_selection() # Traverse from node `2` to any # outbound edges, and use multiple # conditions graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = rel %in% c("B", "C") | values > 6.0) %>% get_selection() # Traverse from node `2` to any outbound # edges, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = grepl("B|C", rel)) %>% get_selection() # Perform a traversal from all nodes to # their outgoing edges and, while doing # so, copy the `label` node attribute # to any of the nodes' incoming edges graph <- graph %>% select_nodes() %>% trav_out_edge( copy_attrs_from = label) # Show the graph's internal edge # data frame after this change graph %>% get_edge_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) %>% set_node_attrs( node_attr = values, values = c(2.3, 4.7, 9.4, 8.3, 6.3)) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs( df = df) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from nodes to # outbound edges with no conditions on the # nodes traversed to graph %>% select_nodes_by_id(nodes = 1) %>% trav_out_edge() %>% get_selection() # Traverse from node `1` to any outbound # edges, filtering to those edges that have # NA values for the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 1) %>% trav_out_edge( conditions = is.na(rel)) %>% get_selection() # Traverse from node `3` to any outbound # edges, filtering to those edges that have # numeric values greater than `5.0` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 3) %>% trav_out_edge( conditions = values > 5.0) %>% get_selection() # Traverse from node `1` to any outbound # edges, filtering to those edges that # have values equal to `A` for the `rel` # edge attribute graph %>% select_nodes_by_id(nodes = 1) %>% trav_out_edge( conditions = rel == "A") %>% get_selection() # Traverse from node `2` to any outbound # edges, filtering to those edges that # have values in the set `B` and `C` for # the `rel` edge attribute graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = rel %in% c("B", "C")) %>% get_selection() # Traverse from node `2` to any # outbound edges, and use multiple # conditions for the traversal graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = rel %in% c("B", "C") & values >= 5.0) %>% get_selection() # Traverse from node `2` to any # outbound edges, and use multiple # conditions graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = rel %in% c("B", "C") | values > 6.0) %>% get_selection() # Traverse from node `2` to any outbound # edges, and use a regular expression as # a filtering condition graph %>% select_nodes_by_id(nodes = 2) %>% trav_out_edge( conditions = grepl("B|C", rel)) %>% get_selection() # Perform a traversal from all nodes to # their outgoing edges and, while doing # so, copy the `label` node attribute # to any of the nodes' incoming edges graph <- graph %>% select_nodes() %>% trav_out_edge( copy_attrs_from = label) # Show the graph's internal edge # data frame after this change graph %>% get_edge_df()
From a graph object of class dgr_graph
with an active selection of edges
move opposite to the edge direction to connected nodes, replacing the current
edge selection with those nodes traversed to. An optional filter by node
attribute can limit the set of nodes traversed to.
This traversal function makes use of an active selection of edges. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
trav_out_node( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum" )
trav_out_node( graph, conditions = NULL, copy_attrs_from = NULL, copy_attrs_as = NULL, agg = "sum" )
graph |
A graph object of class |
conditions |
An option to use filtering conditions for the traversal. |
copy_attrs_from |
Providing an edge attribute name will copy those edge attribute values to the traversed nodes. If the edge attribute already exists, the values will be merged to the traversed nodes; otherwise, a new node attribute will be created. |
copy_attrs_as |
If an edge attribute name is provided in
|
agg |
If an edge attribute is provided to |
A graph object of class dgr_graph
.
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from the # edge `1`->`3` to the attached node # in the direction of the edge; here, no # conditions are placed on the nodes # traversed to graph %>% select_edges( from = 1, to = 3) %>% trav_out_node() %>% get_selection() # Traverse from edges `2`->`5` and # `3`->`5` to the attached node along # the direction of the edge; here, the # traversals lead to different nodes graph %>% select_edges( from = 2, to = 5) %>% select_edges( from = 3, to = 5) %>% trav_out_node() %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is outgoing, this time filtering # numeric values greater than `7.0` for # the `values` node attribute graph %>% select_edges( from = 1, to = 3) %>% trav_out_node( conditions = values > 7.0) %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is outgoing, this time filtering # numeric values less than `7.0` for # the `values` node attribute (the # condition is not met so the original # selection of edge `1`->`3` remains) graph %>% select_edges( from = 1, to = 3) %>% trav_out_node( conditions = values < 7.0) %>% get_selection() # Traverse from the edge `1`->`2` # to node `2`, using multiple conditions graph %>% select_edges( from = 1, to = 2) %>% trav_out_node( conditions = grepl(".*d$", label) | values < 6.0) %>% get_selection() # Create another simple graph to demonstrate # copying of edge attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "from") %>% clear_selection() %>% select_nodes_by_id(nodes = 2) %>% set_node_attrs_ws( node_attr = value, value = 8) %>% clear_selection() %>% select_edges_by_edge_id(edges = 1) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges_by_edge_id(edges = 2) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges() # Show the graph's internal edge data frame graph %>% get_edge_df() # Show the graph's internal node data frame graph %>% get_node_df() # Perform a traversal from the edges to # the central node (`1`) while also applying # the edge attribute `value` to the node (in # this case summing the `value` of 5 from # both edges before adding as a node attribute) graph <- graph %>% trav_out_node( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
# Set a seed suppressWarnings(RNGversion("3.5.0")) set.seed(23) # Create a simple graph graph <- create_graph() %>% add_n_nodes( n = 2, type = "a", label = c("asd", "iekd")) %>% add_n_nodes( n = 3, type = "b", label = c("idj", "edl", "ohd")) %>% add_edges_w_string( edges = "1->2 1->3 2->4 2->5 3->5", rel = c(NA, "A", "B", "C", "D")) # Create a data frame with node ID values # representing the graph edges (with `from` # and `to` columns), and, a set of numeric values df_edges <- data.frame( from = c(1, 1, 2, 2, 3), to = c(2, 3, 4, 5, 5), values = round(rnorm(5, 5), 2)) # Create a data frame with node ID values # representing the graph nodes (with the `id` # columns), and, a set of numeric values df_nodes <- data.frame( id = 1:5, values = round(rnorm(5, 7), 2)) # Join the data frame to the graph's internal # edge data frame (edf) graph <- graph %>% join_edge_attrs(df = df_edges) %>% join_node_attrs(df = df_nodes) # Show the graph's internal node data frame graph %>% get_node_df() # Show the graph's internal edge data frame graph %>% get_edge_df() # Perform a simple traversal from the # edge `1`->`3` to the attached node # in the direction of the edge; here, no # conditions are placed on the nodes # traversed to graph %>% select_edges( from = 1, to = 3) %>% trav_out_node() %>% get_selection() # Traverse from edges `2`->`5` and # `3`->`5` to the attached node along # the direction of the edge; here, the # traversals lead to different nodes graph %>% select_edges( from = 2, to = 5) %>% select_edges( from = 3, to = 5) %>% trav_out_node() %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is outgoing, this time filtering # numeric values greater than `7.0` for # the `values` node attribute graph %>% select_edges( from = 1, to = 3) %>% trav_out_node( conditions = values > 7.0) %>% get_selection() # Traverse from the edge `1`->`3` # to the attached node where the edge # is outgoing, this time filtering # numeric values less than `7.0` for # the `values` node attribute (the # condition is not met so the original # selection of edge `1`->`3` remains) graph %>% select_edges( from = 1, to = 3) %>% trav_out_node( conditions = values < 7.0) %>% get_selection() # Traverse from the edge `1`->`2` # to node `2`, using multiple conditions graph %>% select_edges( from = 1, to = 2) %>% trav_out_node( conditions = grepl(".*d$", label) | values < 6.0) %>% get_selection() # Create another simple graph to demonstrate # copying of edge attribute values to traversed # nodes graph <- create_graph() %>% add_node() %>% select_nodes() %>% add_n_nodes_ws( n = 2, direction = "from") %>% clear_selection() %>% select_nodes_by_id(nodes = 2) %>% set_node_attrs_ws( node_attr = value, value = 8) %>% clear_selection() %>% select_edges_by_edge_id(edges = 1) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges_by_edge_id(edges = 2) %>% set_edge_attrs_ws( edge_attr = value, value = 5) %>% clear_selection() %>% select_edges() # Show the graph's internal edge data frame graph %>% get_edge_df() # Show the graph's internal node data frame graph %>% get_node_df() # Perform a traversal from the edges to # the central node (`1`) while also applying # the edge attribute `value` to the node (in # this case summing the `value` of 5 from # both edges before adding as a node attribute) graph <- graph %>% trav_out_node( copy_attrs_from = value, agg = "sum") # Show the graph's internal node data frame # after this change graph %>% get_node_df()
From a graph object of class dgr_graph
, move along outward edges from one
or more nodes present in a selection to other connected nodes, replacing the
current nodes in the selection with those nodes traversed to until reaching
nodes that satisfy one or more conditions.
This traversal function makes use of an active selection of nodes. After the traversal, depending on the traversal conditions, there will either be a selection of nodes or no selection at all.
Selections of nodes can be performed using the following node selection
(select_*()
) functions: select_nodes()
, select_last_nodes_created()
,
select_nodes_by_degree()
, select_nodes_by_id()
, or
select_nodes_in_neighborhood()
.
Selections of nodes can also be performed using the following traversal
(trav_*()
) functions: trav_out()
, trav_in()
, trav_both()
,
trav_out_node()
, trav_in_node()
, trav_out_until()
, or
trav_in_until()
.
trav_out_until( graph, conditions, max_steps = 30, exclude_unmatched = TRUE, add_to_selection = FALSE )
trav_out_until( graph, conditions, max_steps = 30, exclude_unmatched = TRUE, add_to_selection = FALSE )
graph |
A graph object of class |
conditions |
An option to use a stopping condition for the traversal. If
the condition is met during the traversal (i.e., the node(s) traversed to
match the condition), then those traversals will terminate at those nodes.
Otherwise, traversals with continue and terminate when the number of steps
provided in |
max_steps |
The maximum number of |
exclude_unmatched |
If |
add_to_selection |
If |
A graph object of class dgr_graph
.
# Create a path graph and add # values of 1 to 10 across the # nodes from beginning to end; # select the first path node graph <- create_graph() %>% add_path( n = 10, node_data = node_data( value = 1:10)) %>% select_nodes_by_id( nodes = 1) # Traverse outward, node-by-node # until stopping at a node where # the `value` attribute is 8 graph <- graph %>% trav_out_until( conditions = value == 8) # Get the graph's node selection graph %>% get_selection() # Create two cycles in graph and # add values of 1 to 6 to the # first cycle, and values 7 to # 12 in the second; select nodes # `1` and `7` graph <- create_graph() %>% add_cycle( n = 6, node_data = node_data( value = 1:6)) %>% add_cycle( n = 6, node_data = node_data( value = 7:12)) %>% select_nodes_by_id( nodes = c(1, 7)) # Traverse outward, node-by-node # from `1` and `7` until stopping # at the first nodes where the # `value` attribute is 5, 6, or 15; # specify that we should only # keep the finally traversed to # nodes that satisfy the conditions graph <- graph %>% trav_out_until( conditions = value %in% c(5, 6, 9), exclude_unmatched = TRUE) # Get the graph's node selection graph %>% get_selection()
# Create a path graph and add # values of 1 to 10 across the # nodes from beginning to end; # select the first path node graph <- create_graph() %>% add_path( n = 10, node_data = node_data( value = 1:10)) %>% select_nodes_by_id( nodes = 1) # Traverse outward, node-by-node # until stopping at a node where # the `value` attribute is 8 graph <- graph %>% trav_out_until( conditions = value == 8) # Get the graph's node selection graph %>% get_selection() # Create two cycles in graph and # add values of 1 to 6 to the # first cycle, and values 7 to # 12 in the second; select nodes # `1` and `7` graph <- create_graph() %>% add_cycle( n = 6, node_data = node_data( value = 1:6)) %>% add_cycle( n = 6, node_data = node_data( value = 7:12)) %>% select_nodes_by_id( nodes = c(1, 7)) # Traverse outward, node-by-node # from `1` and `7` until stopping # at the first nodes where the # `value` attribute is 5, 6, or 15; # specify that we should only # keep the finally traversed to # nodes that satisfy the conditions graph <- graph %>% trav_out_until( conditions = value %in% c(5, 6, 9), exclude_unmatched = TRUE) # Get the graph's node selection graph %>% get_selection()
From an active selection of edges in a graph object of class dgr_graph
,
traverse to any available reverse edges between the nodes common to the
selected edges. For instance, if an active selection has the edge 1->2
but
there is also an (not selected) edge 2->1
, then this function can either
switch to the selection of 2->1
, or, incorporate both those edges into the
active selection of edges.
This traversal function makes use of an active selection of edges. After the traversal, depending on the traversal conditions, there will either be a selection of edges or no selection at all.
Selections of edges can be performed using the following selection
(select_*()
) functions: select_edges()
, select_last_edges_created()
,
select_edges_by_edge_id()
, or select_edges_by_node_id()
.
Selections of edges can also be performed using the following traversal
(trav_*()
) functions: trav_out_edge()
, trav_in_edge()
,
trav_both_edge()
, or trav_reverse_edge()
.
trav_reverse_edge(graph, add_to_selection = FALSE)
trav_reverse_edge(graph, add_to_selection = FALSE)
graph |
A graph object of class |
add_to_selection |
An option to either add the reverse edges to the
active selection of edges ( |
A graph object of class dgr_graph
.
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "basic", label = TRUE) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 4, 2, 3, 3), to = c(4, 1, 3, 2, 1)) # Create a graph with the # ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select the edges # `1`->`4` and `2`->`3` graph <- graph %>% select_edges( from = 1, to = 4) %>% select_edges( from = 2, to = 3) # Get the inital edge selection graph %>% get_selection() # Traverse to the reverse edges # (edges `2`: `4`->`1` and # `4`:`3`->`2`) graph <- graph %>% trav_reverse_edge() # Get the current selection of edges graph %>% get_selection()
# Create a node data frame (ndf) ndf <- create_node_df( n = 4, type = "basic", label = TRUE) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 4, 2, 3, 3), to = c(4, 1, 3, 2, 1)) # Create a graph with the # ndf and edf graph <- create_graph( nodes_df = ndf, edges_df = edf) # Explicitly select the edges # `1`->`4` and `2`->`3` graph <- graph %>% select_edges( from = 1, to = 4) %>% select_edges( from = 2, to = 3) # Get the inital edge selection graph %>% get_selection() # Traverse to the reverse edges # (edges `2`: `4`->`1` and # `4`:`3`->`2`) graph <- graph %>% trav_reverse_edge() # Get the current selection of edges graph %>% get_selection()
Execute the graph actions stored in the graph through the use of the
add_graph_action()
function. These actions will be invoked in order and any
errors encountered will trigger a warning message and result in no change to
the input graph. Normally, graph actions are automatically triggered at every
transformation step but this function allows for the manual triggering of
graph actions after setting them, for example.
trigger_graph_actions(graph)
trigger_graph_actions(graph)
graph |
A graph object of class |
A graph object of class dgr_graph
.
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) # Add a graph action that sets a node # attr column with a function; this # uses the `get_pagerank()` function # to provide PageRank values in the # `pagerank` column graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_pagerank", column_name = "pagerank", action_name = "get_pagerank") # Add a second graph action (to be # executed after the first one) that # rescales values in the `pagerank` # column between 0 and 1, and, puts # these values in the `width` column graph <- graph %>% add_graph_action( fcn = "rescale_node_attrs", node_attr_from = "pagerank", node_attr_to = "width", action_name = "pgrnk_to_width") # Add a third and final graph action # (to be executed last) that creates # color values in the `fillcolor` column, # based on the numeric values from the # `width` column graph <- graph %>% add_graph_action( fcn = "colorize_node_attrs", node_attr_from = "width", node_attr_to = "fillcolor", action_name = "pgrnk_fillcolor") # View the graph actions for the graph # object by using the `get_graph_actions()` # function graph %>% get_graph_actions() # Manually trigger to invocation of # the graph actions using the # `trigger_graph_actions()` function graph <- graph %>% trigger_graph_actions() # Examine the graph's internal node # data frame (ndf) to verify that # the `pagerank`, `width`, and # `fillcolor` columns are present graph %>% get_node_df()
# Create a random graph using the # `add_gnm_graph()` function graph <- create_graph() %>% add_gnm_graph( n = 5, m = 10, set_seed = 23) # Add a graph action that sets a node # attr column with a function; this # uses the `get_pagerank()` function # to provide PageRank values in the # `pagerank` column graph <- graph %>% add_graph_action( fcn = "set_node_attr_w_fcn", node_attr_fcn = "get_pagerank", column_name = "pagerank", action_name = "get_pagerank") # Add a second graph action (to be # executed after the first one) that # rescales values in the `pagerank` # column between 0 and 1, and, puts # these values in the `width` column graph <- graph %>% add_graph_action( fcn = "rescale_node_attrs", node_attr_from = "pagerank", node_attr_to = "width", action_name = "pgrnk_to_width") # Add a third and final graph action # (to be executed last) that creates # color values in the `fillcolor` column, # based on the numeric values from the # `width` column graph <- graph %>% add_graph_action( fcn = "colorize_node_attrs", node_attr_from = "width", node_attr_to = "fillcolor", action_name = "pgrnk_fillcolor") # View the graph actions for the graph # object by using the `get_graph_actions()` # function graph %>% get_graph_actions() # Manually trigger to invocation of # the graph actions using the # `trigger_graph_actions()` function graph <- graph %>% trigger_graph_actions() # Examine the graph's internal node # data frame (ndf) to verify that # the `pagerank`, `width`, and # `fillcolor` columns are present graph %>% get_node_df()
A dataset containing exchange rates from USD to all other currencies.
usd_exchange_rates
usd_exchange_rates
A data frame with 196 rows and 3 variables:
the currency from which units will be used to buy units in the alternate currency (this is always USD)
the currency that is to be bought
the cost per unit of the currency to be bought
Render a graph object with the visNetwork R package.
visnetwork(graph)
visnetwork(graph)
graph |
A graph object of class |
# Create a node data frame (ndf) ndf <- create_node_df( n = 6, label = TRUE, fillcolor = c("lightgrey", "red", "orange", "pink", "aqua", "yellow"), shape = "dot", size = c(20, 80, 40, 10, 30, 50), type = c("1", "1", "1", "2", "2", "2") ) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3, 4, 6, 5), to = c(4, 3, 1, 3, 1, 4), color = c("green", "green", "grey", "grey", "blue", "blue"), rel = "leading_to" ) # Create a graph object graph <- create_graph( nodes_df = ndf, edges_df = edf ) # visnetwork(graph)
# Create a node data frame (ndf) ndf <- create_node_df( n = 6, label = TRUE, fillcolor = c("lightgrey", "red", "orange", "pink", "aqua", "yellow"), shape = "dot", size = c(20, 80, 40, 10, 30, 50), type = c("1", "1", "1", "2", "2", "2") ) # Create an edge data frame (edf) edf <- create_edge_df( from = c(1, 2, 3, 4, 6, 5), to = c(4, 3, 1, 3, 1, 4), color = c("green", "green", "grey", "grey", "blue", "blue"), rel = "leading_to" ) # Create a graph object graph <- create_graph( nodes_df = ndf, edges_df = edf ) # visnetwork(graph)